遗传 ›› 2020, Vol. 42 ›› Issue (4): 354-362.doi: 10.16288/j.yczz.19-335
收稿日期:
2019-12-20
修回日期:
2020-02-25
出版日期:
2020-04-20
发布日期:
2020-03-06
通讯作者:
曹延延
E-mail:caoyanyan@bjmu.deu.cn
作者简介:
程苗苗,硕士研究生,专业方向:儿科学。E-mail: 基金资助:
Received:
2019-12-20
Revised:
2020-02-25
Online:
2020-04-20
Published:
2020-03-06
Contact:
Cao Yanyan
E-mail:caoyanyan@bjmu.deu.cn
Supported by:
摘要:
无义介导的mRNA降解(nonsense-mediated mRNA decay, NMD)是指在病理或正常生理情况下mRNA上出现了提前终止密码子(premature termination codon, PTC),从而导致mRNA降解。它是一种广泛存在的mRNA质量监控机制。近年来,在多种疾病中发现某些PTC并未触发NMD,这种现象被称为NMD逃逸(NMD escape),然而其确切机制尚不十分清楚。目前公认的两个学说为:(1) PTC通读,即蛋白的翻译可以顺利通过PTC直至正常的终止密码子,产生全长蛋白;(2)翻译的重新启动,即蛋白翻译在PTC下游的潜在起始点重新开始直至终止密码子,产生N端截短蛋白。目前,通过利用PTC通读,越来越多的药物或小分子已被成功用于无义变异相关疾病的治疗。本文主要综述了NMD逃逸的机制及其在疾病治疗中的应用和进展,以期为进一步了解NMD逃逸及其相关应用概况提供参考。
程苗苗, 曹延延. NMD逃逸机制及其在疾病治疗中的应用[J]. 遗传, 2020, 42(4): 354-362.
Miaomiao Cheng, Yanyan Cao. The NMD escape mechanism and its application in disease therapy[J]. Hereditas(Beijing), 2020, 42(4): 354-362.
表1
基于促通读机制的药物研究应用现况"
通读药物 | 实验模型 | 临床试验 | 相关疾病 | 特点与问题 |
---|---|---|---|---|
氨基糖苷类 | ||||
庆大霉素[ | 动物和患者 | 有 | 囊性纤维化(CF)、杜氏肌营养不良(DMD)、瑞特综合征(RTT)、共济失调性毛细血管扩张症(AT)、法布里病(Fabry)、尼曼匹克症A/B型(NPA/NPB)、全身性神经节苷脂贮积(Gangliosidosis I )、粘多糖累积症II型(MPS II) 、MPS I-H,MPS IIIB,MPS VI、血友病A和B(HA和HB)、无脉络膜症(Choroideremia)、先天性黑朦(LCA type 2)、眼缺损(Ocular coloboma )和Usher综合征I型(USH1) | 副作用如耳毒性、肾毒性和视网膜毒性 |
阿米卡星[ | 动物和细胞 | 无 | 囊性纤维化(CF)、瑞特综合征(RTT)、粘多糖 累积症I-H(MPS I-H)和脊髓型肌萎缩症I型 (SMA I) | |
妥布霉素[ | 动物 | 无 | 囊性纤维化和脊髓型肌萎缩症I型(SMA I) | |
巴龙霉素[ | 细胞 | 无 | 囊性纤维化(CF)、杜氏肌营养不良(DMD)、 瑞特综合征(RTT)、无脉络膜症(Choroideremia)、粘多糖累积症I-H(MPS I-H)、眼缺损(Ocular coloboma )和Usher综合征I型(USH1) | |
G418[ | 动物和细胞 | 无 | 囊性纤维化(CF)、瑞特综合征(RTT)、共济失调性毛细血管扩张症(AT)、粘多糖累积症I-H(MPS I-H)、脊髓型肌萎缩症I型(SMA I)、先天性黑朦(LCA type 2)、色素性视网膜炎(RP)和Usher综合征I型(USH1) | |
氨基糖苷类衍生物 | ||||
新霉素衍生物 (TC003和TC007)[ | 动物和细胞 | 无 | 脊髓型肌萎缩症I型(SMA I) | 生物相容性更好 |
卡那霉素衍生物 (JL023)[ | 脊髓型肌萎缩症I型(SMA I) | 无明显副作用 | ||
巴龙霉素衍生物 (NB30、NB54、 NB84和NB124)[ | 动物和细胞 | 无 | 囊性纤维化(CF)、瑞特综合征(RTT) Usher综合征I型(USH1)和粘多糖累积症I-H(MPS I-H) | 较高的生物相容性、剂量依赖性,可通过血脑屏障,无明显副作用 |
非氨基糖苷类[ | ||||
PTC124 | 动物和患者 | 有 | 囊性纤维化(CF)、杜氏肌营养不良(DMD)、粘多糖累积症VI型(MPS VI)、神经元蜡样脂褐质沉积症(NCLs)、贝敦氏病(Batten disease)、色素性视网膜炎(RP)、Usher综合征I型(USH1)和先天性无虹膜(Congenital aniridia) | 耐受性良好,无严重副作用 |
RTC13、RTC14和 RTC229 | 细胞 | 无 | 杜氏肌营养不良(DMD)和共济失调性毛细血管扩张症(AT) | 对3种提前终止密码子均有效 |
[1] | Nicholson P, Yepiskoposyan H, Metze S, Zamudio Orozco R, Kleinschmidt N, Mühlemann O . Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors. Cell Mol Life Sci, 2010,67(5):677-700. |
[2] | Schoenberg DR, Maquat LE . Regulation of cytoplasmic mRNA decay. Nat Rev Genet, 2012,13(4):246-259. |
[3] | Celik A, Kervestin S, Jacobson A . NMD: At the crossroads between translation termination and ribosome recycling. Biochimie, 2015,114:2-9. |
[4] | Bhuvanagiri M, Schlitter AM, Hentze MW, Kulozik AE . NMD: RNA biology meets human genetic medicine. Biochem J, 2010,430(3):365-377. |
[5] | GUO WT, XU WY, GU MM . Nonsense-mediated mRNA decay and human monogenic disease. Hereditas(Beijing), 2012,34(8):935-942. |
郭文婷, 徐汪洋, 顾鸣敏 . 无义介导的mRNA降解机制及其在单基因遗传病中的作用. 遗传, 2012,34(8):935-942. | |
[6] | Nagy E, Maquat LE . A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci, 1998,23(6):198-199. |
[7] | Jagannathan S, Bradley RK . Translational plasticity facilitates the accumulation of nonsense genetic variants in the human population. Genome Res, 2016,26(12):1639-1650. |
[8] | Neu-Yilik G, Amthor B, Gehring NH, Bahri S, Paidassi H, Hentze MW, Kulozik AE . Mechanism of escape from nonsense-mediated mRNA decay of human β-globin transcripts with nonsense mutations in the first exon. RNA, 2011,17(5):843-854. |
[9] | Peixeiro I, Inácio Â, Barbosa C, Silva AL, Liebhaber SA, Romão L . Interaction of PABPC1 with the translation initiation complex is critical to the NMD resistance of AUG-proximal nonsense mutations. Nucleic Acids Res, 2012,40(3):1160-1173. |
[10] | Pereira FJ, Teixeira A, Kong J, Barbosa C, Silva AL, Marques-Ramos A, Liebhaber SA, Romão L . Resistance of mRNAs with AUG-proximal nonsense mutations to nonsense-mediated decay reflects variables of mRNA structure and translational activity. Nucleic Acids Res, 2015,43(13):6528-6544. |
[11] | Keeling KM, Bedwell DM . Suppression of nonsense mutations as a therapeutic approach to treat genetic diseases. Wiley Interdiscip Rev RNA, 2011,2(6):837-852. |
[12] | Dunkle JA, Dunham CM . Mechanisms of mRNA frame maintenance and its subversion during translation of the genetic code. Biochimie, 2015,114:90-96. |
[13] | Bidou L, Allamand V, Rousset JP, Namy O . Sense from nonsense: therapies for premature stop codon diseases. Trend Mol Med, 2012,18(11):679-688. |
[14] | Fu Y, Shu ZY, Gu MM , The functional mechanisms and clinical application of Read-through drugs. Hereditas (Beijing), 2016,38(7):623-633. |
付洋, 舒在悦, 顾鸣敏 . 促通读药物的作用机制与临床应用. 遗传, 2016,38(7):623-633. | |
[15] | Kaler SG, Tang JR, Donsante A, Kaneski CR . Translational read-through of a nonsense mutation in ATP7A impacts treatment outcome in Menkes disease. Ann Neurol, 2009,65(1):108-113. |
[16] | Gunišová S, Hronová V, Mohammad MP, Hinnebusch AG, Valášek LS . Please do not recycle! Translation reinitiation in microbes and higher eukaryotes. FEMS Microbiol Rev, 2018,42(2):165-192. |
[17] | Hulsebos TJ, Kenter S, Verhagen WI, Baas F, Flucke U, Wesseling P . Premature termination of SMARCB1 translation may be followed by reinitiation in schwannomatosis- associated schwannomas, but results in absence of SMARCB1 expression in rhabdoid tumors. Acta Neuropathol, 2014,128(3):439-448. |
[18] | Stump MR, Gong QM, Zhou ZF . LQT2 nonsense mutations generate trafficking defective NH2-terminally truncated channels by the reinitiation of translation. Am J Physiol Heart Circ Physiol, 2013,305(9):H1397-H1404. |
[19] | Hronová V, Mohammad MP, Wagner S, Pánek J, Gunišová S, Zeman J, Poncová K, Valášek LS . Does eIF3 promote reinitiation after translation of short upstream ORFs also in mammalian cells? RNA Biology, 2017,14(12):1660-1667. |
[20] | Mohammad MP, Munzarová PondělíčkováV, Zeman J, Gunišová S, Valášek, LS . In vivo evidence that eIF3 stays bound to ribosomes elongating and terminating on short upstream ORFs to promote reinitiation. Nucl Aci Res, 2017,45(5):2658-2674. |
[21] | Billack B, Monteiro AN . BRCA1 in breast and ovarian cancer predisposition. Cancer Lett, 2005,227(1):1-7. |
[22] | Buisson M, Anczuków O, Zetoune AB, Ware MD, Mazoyer S . The 185delAG mutation (c.68_69delAG) in the BRCA1 gene triggers translation reinitiation at a downstream AUG codon. Human Mutation, 2006,27(10):1024-1029. |
[23] | Krempely K, Karam R . A novel de novo CDH1 germline variant aids in the classification of carboxy-terminal E-cadherin alterations predicted to escape nonsense- mediated mRNA decay. Cold Spring Harb Mol Case Stu, 2018,4(4):a003012. |
[24] | Loughran G, Jungreis I, Tzani I, Power M, Dmitriev RI, Ivanov IP, Kellis M, Atkins JF . Stop codon readthrough generates a C-terminally extended variant of the human vitamin D receptor with reduced calcitriol response. J Biol Chem, 2018,293(12):4434-4444. |
[25] | Toma KG, Rebbapragada I, Durand S, Lykke-Andersen J . Identification of elements in human long 3' UTRs that inhibit nonsense-mediated decay. RNA, 2015,21(5):887-897. |
[26] | Keeling KM, Wang D, Conard SE, Bedwell DM. Suppression of premature termination codons as a therapeutic approach. Critic Rev Biochem Mol Biol, 2012,47(5):444-463. |
[27] | Matalonga L, Arias Á, Tort F, Ferrer-Cortés X, Garcia-Villoria J, Coll MJ, Gort L, Ribes A . Effect of readthrough treatment in fibroblasts of patients affected by lysosomal diseases caused by premature termination codons. Neurotherapeutics, 2015,12(4):874-886. |
[28] | Heier CR, DiDonato CJ. Translational readthrough by the aminoglycoside geneticin (G418) modulates SMN stability in vitro and improves motor function in SMA mice in vivo. Hum Mol Genet, 2009,18(7):1310-1322. |
[29] | Mattis VB, Rai R, Wang J, Chang CW, Coady T, Lorson CL . Novel aminoglycosides increase SMN levels in spinal muscular atrophy fibroblasts. Hum Genet, 2006,120(4):589-601. |
[30] | Moosajee M, Gregory-Evans K, Ellis CD, Seabra MC, Gregory-Evans CY . Translational bypass of nonsense mutations in zebrafish rep1, pax2.1 and lamb1 highlights a viable therapeutic option for untreatable genetic eye disease. Hum Mol Genet, 2008,17(24):3987-4000. |
[31] | Wang D, Belakhov V, Kandasamy J, Baasov T, Li SC, Li YT, Bedwell DM, Keeling KM . The designer aminoglycoside NB84 significantly reduces glycosaminoglycan accumulation associated with MPS I-H in the Idua-W392X mouse. Mol Genet Metab, 2012,105(1):116-125. |
[32] | Nagel-Wolfrum K, Moller F, Penner I, Wolfrum U . Translational read-through as an alternative approach for ocular gene therapy of retinal dystrophies caused by in-frame nonsense mutations. Vis Neurosci, 2014,31(4-5):309-316. |
[33] | Scheunemann AE, Graham WD, Vendeix FA, Agris PF . Binding of aminoglycoside antibiotics to helix 69 of 23S rRNA. Nucleic Acids Res, 2010,38(9):3094-3105. |
[34] | Eustice DC, Wilhelm JM . Fidelity of the eukaryotic codon-anticodon interaction: interference by aminoglycoside antibiotics. Biochemistry, 1984,23(7):1462-1467. |
[35] | Lee HL, Dougherty JP . Pharmaceutical therapies to recode nonsense mutations in inherited diseases. Pharmacol Ther, 2012,136(2):227-266. |
[36] | Bunge S, Kleijer WJ, Steglich C, Beck M, Zuther C, Morris CP, Schwinger E, Hopwood JJ, Scott HS, Gal A . Mucopolysaccharidosis type I: identification of 8 novel mutations and determination of the frequency of the two common α-L-iduronidase mutations (W402X and Q70X) among European patients. Hum Mol Gen, 1994,3(6):861-866. |
[37] | Keeling KM, Brooks DA, Hopwood JJ, Li PN, Thompson JN, Bedwell DM . Gentamicin-mediated suppression of Hurler syndrome stop mutations restores a low level of α-L-iduronidase activity and reduces lysosomal glycosaminoglycan accumulation. Hum Mol Gen, 2001,10(3):291-299. |
[38] | Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, Paushkin S, Patel M, Trotta CR, Hwang S, Wilde RG, Karp G, Takasugi J, Chen GM, Jones S, Ren HY, Moon YC, Corson D, Turpoff AA, Campbell JA, Conn MM, Khan A, Almstead NG, Hedrick J, Mollin A, Risher N, Weetall M, Yeh S, Branstrom AA, Colacino JM, Babiak J, Ju WD, Hirawat S, Northcutt VJ, Miller LL, Spatrick P, He F, Kawana M, Feng HS, Jacobson A, Peltz SW, Sweeney HL . PTC124 targets genetic disorders caused by nonsense mutations. Nature, 2007,447:87-91. |
[39] | Finkel RS . Read-through strategies for suppression of nonsense mutations in Duchenne/Becker muscular dystrophy: aminoglycosides and ataluren (PTC124). J Child Neurol, 2010,25(9):1158-1164. |
[40] | Brooks-Wilson AR, Kaurah P, Suriano G, Leach S, Senz J, Grehan N, Butterfield YS, Jeyes J, Schinas J, Bacani J, Kelsey M, Ferreira P, MacGillivray B, MacLeod P, Micek M, Ford J, Foulkes W, Australie K, Greenberg C, LaPointe M, Gilpin C, Nikkel S, Gilchrist D, Hughes R, Jackson CE, Monaghan KG, Oliveira MJ, Seruca R, Gallinger S, Caldas C, Huntsman D . Germline E-cadherin mutations in hereditary diffuse gastric cancer: assessment of 42 new families and review of genetic screening criteria. J Med Genet, 2004,41(7):508-517. |
[41] | Bordeira-Carriço R, Ferreira D, Mateus DD, Pinheiro H, Pêgo AP, Santos MA, Oliveira C . Rescue of wild-type E-cadherin expression from nonsense-mutated cancer cells by a suppressor-tRNA. Eur J Hum Genet, 2014,22(9):1085-1092. |
[42] | Ma ZP, Chen J . Nonsense mutations and genetic compensation response. Hereditas(Beijing), 2019,41(5):359-364. |
马志鹏, 陈军 . 无义突变与“遗传补偿效应”. 遗传, 2019,41(5):359-364. |
[1] | 付洋, 舒在悦, 顾鸣敏. 促通读药物的作用机制与临床应用[J]. 遗传, 2016, 38(7): 623-633. |
[2] | 欧阳平,刘远航,黄志刚,齐小娟,倪倩,刘亚萍,宋仁生,李涛,吴柱国. tRNA抑制子对转录因子NKX2.5提前终止密码子的通读[J]. 遗传, 2015, 37(4): 367-373. |
[3] | 郭文婷,徐汪洋,顾鸣敏. 无义介导的mRNA降解机制及其在单基因遗传病中的作用[J]. 遗传, 2012, 34(8): 935-942. |
[4] | 黄颖浩,杨琴波,邓云华,余念文,王擎,刘木根. 一个Ⅰ型神经纤维瘤家系的基因突变分析[J]. 遗传, 2008, 30(3): 309-312. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: