遗传 ›› 2021, Vol. 43 ›› Issue (5): 487-500.doi: 10.16288/j.yczz.20-409
文钟灵, 杨旻恺, 陈星雨, 郝晨宇, 任然, 储淑娟, 韩洪苇, 林红燕, 陆桂华, 戚金亮, 杨永华()
收稿日期:
2020-11-30
修回日期:
2020-12-29
出版日期:
2021-05-20
发布日期:
2021-01-27
通讯作者:
杨永华
E-mail:yangyh@nju.edu.cn
作者简介:
文钟灵,博士研究生,研究方向:土壤分子微生物学。E-mail: 基金资助:
Zhongling Wen, Minkai Yang, Xingyu Chen, Chenyu Hao, Ran Ren, Shujuan Chu, Hongwei Han, Hongyan Lin, Guihua Lu, Jinliang Qi, Yonghua Yang()
Received:
2020-11-30
Revised:
2020-12-29
Online:
2021-05-20
Published:
2021-01-27
Contact:
Yang Yonghua
E-mail:yangyh@nju.edu.cn
Supported by:
摘要:
针对酸性土壤中影响作物生产的主要限制因子(pH及其铝毒),选用耐酸铝且具有固氮能力的豆科作物是改良该类土壤、促进农业生产的有效措施之一,至于其所关联的根际微生物是否起到相应的促进作用,一直为国内外学者所关注和探究。为此,本研究以铝耐受型大豆品种基因型(BX10)和铝敏感型大豆品种基因型(BD2)为材料,以酸性红壤为生长介质,采样部位按照土层到根系的距离由远到近的顺序划分为:根外对照土(bulk soil, BS)、两侧根际土(rhizospheric soil at two sides, SRH)、刷后根际土(rhizospheric soil after brush, BRH)和冲洗后的根际土(rhizospheric soil after wash, WRH)。利用Illumina MiSeq对16S rRNA基因扩增产物的高变区V4进行高通量测序,研究了不同耐铝基因型大豆根际细菌群落的结构、功能与分子遗传多样性的差异性作用。结果表明,各处理间大豆根际细菌群落的alpha多样性无显著性差异,beta多样性差异也均不显著。PCA和PCoA分析可见BRH和WRH部位的物种组成较为一致,而BS和SRH部位具有相似的物种组成,说明植物生长主要影响根际的BRH及WRH部位的微生物,对SRH影响较小。对各分类水平物种组成和丰度进行比较,门分类水平三元图表明两个基因型大豆均在WRH部位富集蓝细菌门(Cyanobacteria)细菌;统计分析表明铝耐受型大豆(BX10)根部对于增强植物抗逆性的植物根际促生菌(plant growth promoting rhizobacteria, PGPR)有富集作用,这些富集的细菌包括蓝细菌门、拟杆菌门(Bacteroidetes)和变形菌门(Proteobacteria)等,以及部分与固氮和耐铝的功能相关的属种。另对同一个基因型大豆不同采样部位间进行比较分析,结果显示土壤不同采样部位可以选择性富集不同的PGPR物种。此外,16S rDNA的同源蛋白簇(clusters of orthologous groups of proteins, COG)功能预测分析的结果表明,多个COG包括COG0347、COG1348、COG1433、COG2710、COG3870、COG4656、COG5420、COG5456和COG5554均可能与固氮直接相关;BD2相比于BX10,结果显示在BRH和WRH部位似乎均更易富集固氮直接相关的COG,其可能的原因尚待进一步研究。
文钟灵, 杨旻恺, 陈星雨, 郝晨宇, 任然, 储淑娟, 韩洪苇, 林红燕, 陆桂华, 戚金亮, 杨永华. 酸铝胁迫土壤中耐铝大豆根际不同部位细菌群落结构、功能及其对促生菌富集作用的研究[J]. 遗传, 2021, 43(5): 487-500.
Zhongling Wen, Minkai Yang, Xingyu Chen, Chenyu Hao, Ran Ren, Shujuan Chu, Hongwei Han, Hongyan Lin, Guihua Lu, Jinliang Qi, Yonghua Yang. Bacterial composition, function and the enrichment of plant growth promoting rhizobacteria (PGPR) in differential rhizosphere compartments of Al-tolerant soybean in acidic soil[J]. Hereditas(Beijing), 2021, 43(5): 487-500.
表1
不同样品细菌群落结构的统计分析"
对比样本信息 | Adonis分析 | ANOSIM分析 | |||
---|---|---|---|---|---|
R2 | P-value | Statistic | P-value | ||
BX_16FBS vs. BD_16FBS | 0.487 | 0.1 | 1 | 0.098 | |
BX_16FSRH vs. BD_16FSRH | 0.291 | 0.2 | 0.2593 | 0.186 | |
BX_16FBRH vs. BD_16FBRH | 0.512 | 0.1 | 1 | 0.098 | |
BX_16FWRH vs. BD_16FWRH | 0.327 | 0.1 | 0.4815 | 0.098 | |
BX_16FBS vs. BX_16FSRH | 0.231 | 0.2 | 0.037 | 0.4 | |
BX_16FBS vs. BX_16FBRH | 0.580 | 0.1 | 1 | 0.098 | |
BX_16FBS vs. BX_16FWRH | 0.584 | 0.1 | 1 | 0.098 | |
BX_16FSRH vs. BX_16FBRH | 0.680 | 0.1 | 1 | 0.098 | |
BX_16FSRH vs. BX_16FWRH | 0.718 | 0.1 | 1 | 0.098 | |
BX_16FBRH vs. BX_16FWRH | 0.488 | 0.1 | 0.8148 | 0.098 | |
BD_16FBS vs. BD_16FSRH | 0.479 | 0.1 | 0.6296 | 0.098 | |
BD_16FBS vs. BD_16FBRH | 0.556 | 0.1 | 1 | 0.098 | |
BD_16FBS vs. BD_16FWRH | 0.603 | 0.1 | 1 | 0.098 | |
BD_16FSRH vs. BD_16FBRH | 0.447 | 0.1 | 0.9259 | 0.098 | |
BD_16FSRH vs. BD_16FWRH | 0.620 | 0.1 | 1 | 0.098 | |
BD_16FBRH vs. BD_16FWRH | 0.373 | 0.1 | 0.5926 | 0.098 |
表2
种分类水平物种在各样本中的相对丰度"
门 | 种 | BX_ 16FBS | BD_ 16FBS | BX_ 16FSRH | BD_ 16FSRH | BX_ 16FBRH | BD_ 16FBRH | BX_ 16FWRH | BD_ 16FWRH |
---|---|---|---|---|---|---|---|---|---|
Proteobacteria | Bradyrhizobium elkanii | 0.004479 | 0.005202 | 0.004444 | 0.00565 | 0.005994 | 0.00844 | 0.009164 | 0.01695 |
0.002549 | 0.004582 | 0.003583 | 0.003583 | 0.009508 | 0.00627 | 0.005788 | 0.015985 | ||
0.006856 | 0.004926 | 0.004685 | 0.003032 | 0.012988 | 0.012919 | 0.009439 | 0.020912 | ||
Proteobacteria | Acinetobacter johnsonii | 0 | 0.008957 | 0 | 0.00565 | 3.45E-05 | 0 | 0 | 0 |
0 | 0.043752 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0.10349 | 0 | 0 | 0 | 0 | 0 | 0.002963 | ||
Proteobacteria | Brevundimonas diminuta | 0 | 0.003824 | 0 | 0.003032 | 0 | 0 | 0 | 0 |
0 | 0.019844 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0.051021 | 0 | 0 | 0 | 0 | 0 | 3.45E-05 | ||
Proteobacteria | Pseudomonas fragi | 0 | 0.000276 | 0 | 0.000138 | 0 | 0 | 3.45E-05 | 0 |
0 | 0.000551 | 0 | 0 | 0 | 0 | 0 | 6.89E-05 | ||
0 | 0 | 0 | 0 | 0.000103 | 0 | 0 | 0.01006 | ||
Proteobacteria | Rhizobium radiobacter | 0 | 0.004065 | 0 | 0.00248 | 0.000207 | 0.000172 | 0.000517 | 0.000241 |
0 | 0.012333 | 0 | 3.45E-05 | 6.89E-05 | 0 | 6.89E-05 | 0.000965 | ||
3.45E-05 | 0.028215 | 0 | 0 | 0.001034 | 0.000138 | 0.00062 | 0.000241 | ||
Actinobacteria | Pseudarthrobacter oxydans | 0.000103 | 0.007441 | 0.000172 | 0.003376 | 0.017294 | 0.000448 | 0.000103 | 0.000103 |
0.000138 | 0.004547 | 0.000103 | 0.000138 | 0.005409 | 0.000207 | 0.000103 | 0.000103 | ||
0.000276 | 0.004134 | 0.000138 | 6.89E-05 | 0.011128 | 0.000172 | 6.89E-05 | 0.000551 | ||
Actinobacteria | Arthrobacter methylotrophus | 0.000103 | 0.000448 | 3.45E-05 | 0.000517 | 0.01664 | 6.89E-05 | 6.89E-05 | 3.45E-05 |
0 | 0.000517 | 0.000103 | 0 | 0.002859 | 6.89E-05 | 0 | 0 | ||
3.45E-05 | 6.89E-05 | 0 | 3.45E-05 | 0.004341 | 0 | 3.45E-05 | 0 | ||
Firmicutes | Aerococcus viridans | 0 | 0.002825 | 0 | 0.002308 | 0 | 0 | 0 | 0 |
0 | 0.010783 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0.027492 | 0 | 0 | 0 | 0 | 0 | 6.89E-05 |
表3
固氮相关COG功能分类统计"
COG # | BX_16FBS | BD_16FBS | BX_16FSRH | BD_16FSRH | BX_16FBRH | BD_16FBRH | BX_16FWRH | BD_16FWRH | 描述 |
---|---|---|---|---|---|---|---|---|---|
COG0347 | 25713 | 17226 | 24360 | 21215 | 18905 | 20106 | 22367 | 20821 | 氮调节蛋白P-II |
22495 | 19480 | 25742 | 24097 | 21382 | 22359 | 21680 | 20935 | ||
21566 | 15366 | 24226 | 23440 | 19788 | 21784 | 21537 | 20783 | ||
COG1348 | 2601 | 2259 | 2034 | 2311 | 1925 | 2744 | 4363 | 3265 | 参与固氮过程中的关键酶反应 |
4592 | 2250 | 2263 | 2079 | 2724 | 2609 | 3280 | 3692 | ||
2323 | 2362 | 2828 | 2047 | 2841 | 2845 | 4484 | 3643 | ||
COG1433 | 2101 | 1652 | 2160 | 1511 | 1037 | 1977 | 1515 | 1704 | 二氮酶铁钼辅因子生物合成蛋白 |
2290 | 1246 | 2080 | 2330 | 1211 | 2081 | 1301 | 1584 | ||
1915 | 1048 | 1943 | 2114 | 1508 | 1864 | 1343 | 1970 | ||
COG2710 | 7747 | 6738 | 6558 | 6756 | 6622 | 8012 | 15425 | 10254 | 固氮酶 |
12624 | 6483 | 7108 | 6558 | 8883 | 8205 | 11132 | 11770 | ||
7342 | 7092 | 7938 | 6503 | 8734 | 8086 | 15733 | 10877 | ||
COG3870 | 2011 | 1483 | 1766 | 1322 | 547 | 1221 | 717 | 911 | 来自氮调节蛋白P-II的 蛋白质 |
1285 | 1245 | 1779 | 2107 | 675 | 1327 | 769 | 727 | ||
1488 | 1421 | 1553 | 1967 | 726 | 1339 | 701 | 776 | ||
COG4656 | 2338 | 2037 | 2173 | 1998 | 1798 | 2088 | 1615 | 1589 | 固氮所需 |
2161 | 1974 | 2105 | 1788 | 1831 | 2003 | 1919 | 1697 | ||
2030 | 1701 | 2229 | 1797 | 1930 | 1996 | 1610 | 2008 | ||
COG5420 | 164 | 229 | 140 | 218 | 380 | 340 | 379 | 542 | 固氮 |
221 | 170 | 159 | 128 | 426 | 273 | 289 | 500 | ||
236 | 155 | 184 | 125 | 609 | 397 | 367 | 653 | ||
COG5456 | 253 | 534 | 305 | 508 | 738 | 909 | 1101 | 1418 | 固氮蛋白FixH |
283 | 658 | 430 | 273 | 934 | 758 | 1045 | 1416 | ||
707 | 1229 | 362 | 280 | 1175 | 931 | 917 | 2132 | ||
COG5554 | 156 | 192 | 135 | 206 | 373 | 364 | 421 | 593 | 固氮蛋白 |
211 | 158 | 162 | 129 | 440 | 273 | 340 | 557 | ||
257 | 146 | 175 | 121 | 609 | 411 | 374 | 709 |
附表1
属分类水平物种在各样本中丰度"
Genus | BX_16FWRH3 | BX_16FWRH2 | BX_16FWRH1 | BD_16FBS1 | BD_16FBS2 | BD_16FBS3 |
---|---|---|---|---|---|---|
Sphingomonas | 0.040996 | 0.057843 | 0.041616 | 0.0483 | 0.043339 | 0.042133 |
Bryobacter | 0.021704 | 0.02384 | 0.023668 | 0.01981 | 0.021049 | 0.022634 |
Mucilaginibacter | 0.026389 | 0.026699 | 0.017329 | 0.02784 | 0.030248 | 0.007028 |
Burkholderia-Paraburkholderia | 0.024563 | 0.055776 | 0.024839 | 0.01247 | 0.004961 | 0.007441 |
Massilia | 0.004272 | 0.006373 | 0.00348 | 0.01316 | 0.033038 | 0.014917 |
Phenylobacterium | 0.020843 | 0.024529 | 0.019051 | 0.00617 | 0.004547 | 0.003583 |
Acidibacter | 0.015675 | 0.017088 | 0.020912 | 0.01612 | 0.00472 | 0.005857 |
Candidatus_Solibacter | 0.010301 | 0.011128 | 0.009474 | 0.01027 | 0.009439 | 0.009887 |
Flavisolibacter | 0.009302 | 0.008303 | 0.005994 | 0.00985 | 0.01602 | 0.006373 |
Gemmatimonas | 0.00534 | 0.005064 | 0.004444 | 0.01495 | 0.014194 | 0.009577 |
Bradyrhizobium | 0.009198 | 0.005788 | 0.009439 | 0.0052 | 0.004582 | 0.004926 |
Ralstonia | 0.010749 | 0.010921 | 0.004823 | 0.00617 | 0.004237 | 0.002033 |
Granulicella | 0.008061 | 0.00658 | 0.006132 | 0.00537 | 0.005684 | 0.006959 |
Dyella | 0.008475 | 0.024081 | 0.010507 | 0.00348 | 0.001826 | 0.001585 |
Acinetobacter | 0 | 3.45E-05 | 0 | 0.00896 | 0.043752 | 0.103559 |
Thermosporothrix | 0.010439 | 0.012161 | 0.017811 | 0.00382 | 0.001344 | 0.001654 |
Niastella | 0.009474 | 0.012196 | 0.010886 | 0.00555 | 0.001034 | 0.00062 |
Bacillus | 0.000655 | 0.001964 | 0.003101 | 0.00513 | 0.011024 | 0.027767 |
Sorangium | 0.005615 | 0.003824 | 0.004651 | 0.00961 | 0.005615 | 0.004858 |
Rhodanobacter | 0.006718 | 0.006132 | 0.008165 | 0.00382 | 0.002377 | 0.00124 |
Terracidiphilus | 0.01006 | 0.009646 | 0.006856 | 0.00365 | 0.004065 | 0.00248 |
Rhizobium | 0.010818 | 0.007545 | 0.003893 | 0.00496 | 0.012678 | 0.030007 |
Acidothermus | 0.003135 | 0.002894 | 0.003342 | 0.01977 | 0.007372 | 0.009784 |
Nitrospira | 0.002274 | 0.003445 | 0.002825 | 0.003 | 0.001998 | 0.00155 |
Haliangium | 0.005374 | 0.004479 | 0.004789 | 0.00431 | 0.002859 | 0.002239 |
Actinospica | 0.00503 | 0.001068 | 0.005926 | 0.00872 | 0.000965 | 0.000861 |
Brevundimonas | 0 | 0 | 0 | 0.00382 | 0.019844 | 0.051021 |
Lactococcus | 0 | 0 | 0 | 0 | 0 | 0 |
Asticcacaulis | 0.003617 | 0.008234 | 0.002687 | 0.00282 | 0.000379 | 0.000655 |
Pseudarthrobacter | 0.000103 | 0.000103 | 6.89E-05 | 0.00744 | 0.004547 | 0.004134 |
Achromobacter | 0 | 6.89E-05 | 3.45E-05 | 0.0032 | 0.015882 | 0.030868 |
Methylotenera | 0.000827 | 0.000517 | 0.000103 | 0.00014 | 0.005684 | 6.89E-05 |
Aerococcus | 0 | 0 | 0 | 0.00282 | 0.010783 | 0.027492 |
Heliimonas | 0.00124 | 0.000241 | 0.003445 | 0.0000689 | 3.45E-05 | 0 |
Arthrobacter | 6.89E-05 | 0 | 3.45E-05 | 0.00045 | 0.000517 | 0.000103 |
Pseudomonas | 3.45E-05 | 0 | 0 | 0.00034 | 0.000551 | 0 |
Sphingomonas | 0.037379 | 0.041926 | 0.054535 | 0.04499 | 0.030902 | 0.035725 |
Bryobacter | 0.042684 | 0.050401 | 0.037517 | 0.02673 | 0.04706 | 0.050505 |
Mucilaginibacter | 0.007751 | 0.010301 | 0.008647 | 0.00768 | 0.002584 | 0.004926 |
Burkholderia-Paraburkholderia | 0.011644 | 0.009061 | 0.01223 | 0.01392 | 0.004823 | 0.00596 |
Massilia | 0.000586 | 0.002446 | 0.00441 | 0.02205 | 0.000448 | 0.001171 |
Phenylobacterium | 0.004031 | 0.007166 | 0.006615 | 0.01037 | 0.002239 | 0.004754 |
Acidibacter | 0.023254 | 0.01192 | 0.011403 | 0.00985 | 0.009474 | 0.009991 |
Candidatus_Solibacter | 0.018259 | 0.022014 | 0.01571 | 0.01223 | 0.024322 | 0.020291 |
Flavisolibacter | 0.004031 | 0.005857 | 0.014745 | 0.01071 | 0.005478 | 0.006718 |
Gemmatimonas | 0.008337 | 0.00975 | 0.016088 | 0.01192 | 0.006959 | 0.007924 |
Bradyrhizobium | 0.004444 | 0.003583 | 0.004685 | 0.00565 | 0.003583 | 0.003032 |
Ralstonia | 0.002067 | 0.001344 | 0.002584 | 0.00427 | 0.000792 | 0.001275 |
Granulicella | 0.007476 | 0.007717 | 0.007614 | 0.0073 | 0.003514 | 0.004754 |
Dyella | 0.001998 | 0.000861 | 0.003755 | 0.00541 | 0.001688 | 0.002653 |
Acinetobacter | 0 | 0 | 0 | 0.00565 | 0 | 3.45E-05 |
Thermosporothrix | 0.008406 | 0.001068 | 0.007235 | 0.00231 | 0.003307 | 0.003066 |
Niastella | 0.00379 | 0.001447 | 0.009233 | 0.00551 | 0.003238 | 0.00565 |
Bacillus | 0.012333 | 0.000965 | 0.001137 | 0.00462 | 0.001585 | 0.001791 |
Sorangium | 0.004754 | 0.003548 | 0.004272 | 0.00758 | 0.003858 | 0.00472 |
Rhodanobacter | 0.00155 | 0.002722 | 0.003101 | 0.00262 | 0.001137 | 0.001723 |
Terracidiphilus | 0.0041 | 0.003101 | 0.004789 | 0.00372 | 0.002136 | 0.002859 |
Rhizobium | 0.000207 | 0.000723 | 0.000896 | 0.0032 | 0.000207 | 0.000172 |
Acidothermus | 0.004203 | 0.002928 | 0.003824 | 0.01051 | 0.00472 | 0.005926 |
Nitrospira | 0.007545 | 0.006511 | 0.004513 | 0.00293 | 0.012264 | 0.010163 |
Haliangium | 0.002963 | 0.002963 | 0.002687 | 0.00451 | 0.002859 | 0.003376 |
Actinospica | 0.003066 | 0.000413 | 0.004926 | 0.00269 | 0.004444 | 0.003617 |
Brevundimonas | 0 | 0 | 0 | 0.00303 | 0 | 0 |
Lactococcus | 0 | 0 | 0 | 0 | 0 | 0 |
Asticcacaulis | 0.000172 | 0.001412 | 0.000965 | 0.00072 | 0.000276 | 0.000345 |
Pseudarthrobacter | 0.000172 | 0.000103 | 0.000138 | 0.00338 | 0.000138 | 6.89E-05 |
Achromobacter | 0 | 0 | 0 | 0.00272 | 0 | 0 |
Methylotenera | 0.000207 | 0.000345 | 0.002412 | 0.0000689 | 0 | 3.45E-05 |
Aerococcus | 0 | 0 | 0 | 0.00231 | 0 | 0 |
Heliimonas | 0 | 0.000138 | 0 | 0.0000345 | 3.45E-05 | 6.89E-05 |
Arthrobacter | 3.45E-05 | 0.000103 | 0 | 0.00052 | 0 | 3.45E-05 |
Pseudomonas | 0 | 0 | 0 | 0.00017 | 0 | 0 |
Sphingomonas | 0.039825 | 0.045957 | 0.070452 | 0.06177 | 0.063079 | 0.049437 |
Bryobacter | 0.026183 | 0.019396 | 0.01254 | 0.04572 | 0.033796 | 0.034864 |
Mucilaginibacter | 0.039067 | 0.042202 | 0.020016 | 0.00469 | 0.021256 | 0.038275 |
Burkholderia-Paraburkholderia | 0.04706 | 0.033796 | 0.013505 | 0.01003 | 0.009474 | 0.031591 |
Massilia | 0.007855 | 0.010852 | 0.002205 | 0.00279 | 0.005133 | 0.002722 |
Phenylobacterium | 0.029765 | 0.028904 | 0.052882 | 0.00217 | 0.005374 | 0.009991 |
Acidibacter | 0.011679 | 0.016364 | 0.021291 | 0.01034 | 0.005857 | 0.025218 |
Candidatus_Solibacter | 0.007269 | 0.007993 | 0.005857 | 0.01936 | 0.011644 | 0.011403 |
Flavisolibacter | 0.010232 | 0.020843 | 0.005753 | 0.00641 | 0.018672 | 0.006925 |
Gemmatimonas | 0.004547 | 0.0041 | 0.005891 | 0.01034 | 0.007958 | 0.006856 |
Bradyrhizobium | 0.016984 | 0.015985 | 0.020912 | 0.00448 | 0.002549 | 0.006925 |
Ralstonia | 0.009233 | 0.009198 | 0.004651 | 0.00227 | 0.001895 | 0.007097 |
Granulicella | 0.009887 | 0.006993 | 0.008061 | 0.00637 | 0.004789 | 0.010266 |
Dyella | 0.023151 | 0.010301 | 0.008854 | 0.00055 | 0.002067 | 0.002549 |
Acinetobacter | 0 | 6.89E-05 | 0.00472 | 0 | 0 | 0 |
Thermosporothrix | 0.007235 | 0.005168 | 0.003032 | 0.00152 | 0.001068 | 0.039343 |
Niastella | 0.008199 | 0.017673 | 0.007028 | 0.00072 | 0.000758 | 0.007924 |
Bacillus | 0.004203 | 0.009198 | 0.012264 | 0.00158 | 0.00124 | 0.002446 |
Sorangium | 0.006304 | 0.009371 | 0.010163 | 0.00396 | 0.005237 | 0.003583 |
Rhodanobacter | 0.00472 | 0.011472 | 0.012264 | 0.00251 | 0.005099 | 0.010266 |
Terracidiphilus | 0.011782 | 0.008578 | 0.001998 | 0.00296 | 0.004306 | 0.005822 |
Rhizobium | 0.008785 | 0.008957 | 0.004823 | 0.0000689 | 0.000103 | 0.000482 |
Acidothermus | 0.003411 | 0.002825 | 0.00248 | 0.00338 | 0.002997 | 0.003617 |
Nitrospira | 0.002722 | 0.003514 | 0.002308 | 0.00882 | 0.0041 | 0.004892 |
Haliangium | 0.006546 | 0.007269 | 0.012919 | 0.00286 | 0.004203 | 0.00217 |
Actinospica | 0.00503 | 0.007304 | 0.003652 | 0.00055 | 0.000551 | 0.012781 |
Brevundimonas | 0 | 0 | 3.45E-05 | 0 | 0 | 0 |
Lactococcus | 0 | 0 | 0.074999 | 0 | 0 | 0 |
Asticcacaulis | 0.004789 | 0.005512 | 0.004961 | 0.00024 | 0.00031 | 0.014504 |
Pseudarthrobacter | 0.000103 | 0.000103 | 0.000551 | 0.0001 | 0.000138 | 0.000276 |
Achromobacter | 3.45E-05 | 0.001378 | 0.000138 | 0.0000345 | 0 | 3.45E-05 |
Methylotenera | 3.45E-05 | 0.000965 | 0.000379 | 0.00303 | 0.000586 | 0.000345 |
Aerococcus | 0 | 0 | 6.89E-05 | 0 | 0 | 0 |
Heliimonas | 0.000689 | 0.002343 | 0.000758 | 0 | 0.000103 | 0 |
Arthrobacter | 3.45E-05 | 0 | 0 | 0.0001 | 0 | 3.45E-05 |
Pseudomonas | 0 | 0.000103 | 0.017122 | 0 | 0 | 6.89E-05 |
Sphingomonas | 0.027871 | 0.045544 | 0.036483 | 0.07166 | 0.043029 | 0.068178 |
Bryobacter | 0.014917 | 0.018776 | 0.017191 | 0.02746 | 0.033899 | 0.035553 |
Mucilaginibacter | 0.046681 | 0.067179 | 0.038516 | 0.02849 | 0.014538 | 0.029834 |
Burkholderia-Paraburkholderia | 0.040996 | 0.058738 | 0.032728 | 0.03745 | 0.01378 | 0.03135 |
Massilia | 0.133462 | 0.02949 | 0.042684 | 0.00593 | 0.007304 | 0.006167 |
Phenylobacterium | 0.011748 | 0.01974 | 0.015365 | 0.01619 | 0.016502 | 0.020257 |
Acidibacter | 0.01068 | 0.01347 | 0.012161 | 0.01433 | 0.016054 | 0.009439 |
Candidatus_Solibacter | 0.005684 | 0.006615 | 0.005512 | 0.01233 | 0.017914 | 0.011024 |
Flavisolibacter | 0.004479 | 0.009405 | 0.010301 | 0.0165 | 0.012161 | 0.010645 |
Gemmatimonas | 0.004031 | 0.005512 | 0.007751 | 0.00444 | 0.004995 | 0.007235 |
Bradyrhizobium | 0.005994 | 0.009508 | 0.012988 | 0.00847 | 0.00627 | 0.012919 |
Ralstonia | 0.05047 | 0.01726 | 0.018879 | 0.00682 | 0.002825 | 0.003376 |
Granulicella | 0.00565 | 0.007614 | 0.007062 | 0.00906 | 0.008303 | 0.009646 |
Dyella | 0.007441 | 0.021566 | 0.008061 | 0.00706 | 0.001929 | 0.008854 |
Acinetobacter | 3.45E-05 | 0 | 0 | 0 | 0 | 0 |
Thermosporothrix | 0.006787 | 0.004961 | 0.006167 | 0.00768 | 0.004582 | 0.004651 |
Niastella | 0.004272 | 0.007889 | 0.005684 | 0.01003 | 0.010542 | 0.007372 |
Bacillus | 0.002205 | 0.002894 | 0.006511 | 0.00975 | 0.001447 | 0.003583 |
Sorangium | 0.003514 | 0.003927 | 0.005719 | 0.0051 | 0.005478 | 0.003342 |
Rhodanobacter | 0.007614 | 0.007062 | 0.008268 | 0.00634 | 0.004616 | 0.006201 |
Terracidiphilus | 0.002377 | 0.008888 | 0.005133 | 0.0072 | 0.004306 | 0.00472 |
Rhizobium | 0.003204 | 0.006098 | 0.008475 | 0.00183 | 0.001585 | 0.0041 |
Acidothermus | 0.002997 | 0.002343 | 0.003927 | 0.00537 | 0.003238 | 0.00472 |
Nitrospira | 0.001654 | 0.002067 | 0.002067 | 0.00668 | 0.006546 | 0.006959 |
Haliangium | 0.003893 | 0.003652 | 0.00596 | 0.00479 | 0.006787 | 0.002584 |
Actinospica | 0.001412 | 0.000861 | 0.003342 | 0.00641 | 0.003652 | 0.005684 |
Brevundimonas | 0 | 0 | 0 | 0 | 0 | 0 |
Lactococcus | 0 | 0 | 0 | 0 | 0 | 0 |
Asticcacaulis | 0.001688 | 0.002653 | 0.003686 | 0.00296 | 0.001344 | 0.003927 |
Pseudarthrobacter | 0.017294 | 0.005409 | 0.011128 | 0.00045 | 0.000207 | 0.000172 |
Achromobacter | 6.89E-05 | 0.000207 | 0.000138 | 0.0000689 | 0 | 0.000138 |
Methylotenera | 0.004892 | 0.004341 | 0.019396 | 0.0000689 | 6.89E-05 | 3.45E-05 |
Aerococcus | 0 | 0 | 0 | 0 | 0 | 0 |
Heliimonas | 0.016433 | 0.005374 | 0.00093 | 0.00034 | 0.000172 | 0.000379 |
Arthrobacter | 0.016709 | 0.002859 | 0.004375 | 0.0000689 | 6.89E-05 | 0 |
Pseudomonas | 0 | 0 | 0.000103 | 0.0001 | 0 | 0 |
[1] | Cheng FX, Cao GQ, Wang XR, Zhao J, Yan XL, Liao H . Isolation and application of effective nitrogen fixation rhizobial strains on low-phosphorus acid soils in South China. Chin Sci Bull, 2009,54(3):412-420. |
[2] | Kochian LV . Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol, 1995,46, 237-260. |
[3] | Kochian LV, Hoekenga OA, Pineros MA . How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol, 2004,55:459-493. |
[4] | Li SX . The current state and prospect of plant nutrition and fertilizer science. Plant Nutr Fert Sci, 1999,5(3):193-205. |
李生秀 . 植物营养与肥料学科的现状与展望. 植物营养与肥料学报, 1999,5(3):193-205. | |
[5] | Xu QP . Nitrogen cycle and nitrogen fixation. Middle School Biol, 2005,21(3):11-13. |
徐清平 . 氮循环与固氮. 中学生物学, 2005,21(3):11-13. | |
[6] | Foy CD . Plant adaptation to acid, aluminum-toxic soils. Commun Soil Sci Plan, 1988,19(7-12):959-987. |
[7] | Zhang X, Liu P, Yang Y, Xu G . Effect of Al in soil on photosynthesis and related morphological and physiological characteristics of two soybean genotypes. Bot Stud, 2007,48(4):435-444. |
[8] | Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ . Aluminum tolerance in wheat (Triticum aestivum L.)(I. Uptake and distribution of aluminum in root apices). Plant Physiol, 1993,103(3):685-693. |
[9] | Vitorello VA, Capaldi FR, Stefanuto VA . Recent advances in aluminum toxicity and resistance in higher plants. Brazilian J Plant Physiol, 2005,17:129-143. |
[10] | Ryan PR, Delhaize E, Jones DL . Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol, 2001,52:527-560. |
[11] | Yang ZM, Sivaguru M, Horst WJ, Matsumoto H . Aluminium tolerance is achieved by exudation of citric acid from roots of soybean ( Glycine max). Physiol Plant, 2000,110(1):72-77. |
[12] | Avis TJ, Gravel V, Antoun H, Tweddell RJ . Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem, 2008,40(7):1733-1740. |
[13] | Dong DF, Peng XX, Yan XL . Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes. Physiol Plant, 2004,122(2):190-199. |
[14] | Zhen Y, Miao L, Su J, Liu SH, Yin YL, Wang SS, Pang YJ, Shen HG, Tian DC, Qi JL, Yang YH . Differential responses of anti-oxidative enzymes to aluminum stress in tolerant and sensitive soybean genotypes. J Plant Nutr, 2009,32(8):1255-1270. |
[15] | Yang T, Ding Y, Zhu Y, Li Y, Wang X, Yang R, Lu G, Qi J, Yang Y . Rhizosphere bacteria induced by aluminum- tolerant and aluminum-sensitive soybeans in acid soil. Plant Soil Environ, 2012,58(6):262-267. |
[16] | Yang TY, Liu GL, Li YC, Zhu SM, Zou AL, Qi JL, Yang YH . Rhizosphere microbial communities and organic acids secreted by aluminum-tolerant and aluminum- sensitive soybean in acid soil. Biol Fert Soils, 2012,48(1):97-108. |
[17] | Li YC, Yang TY, Zhang PP, Zou AL, Peng X, Wang LL, Yang RW, Qi JL, Yang YH . Differential responses of the diazotrophic community to aluminum-tolerant and aluminum-sensitive soybean genotypes in acidic soil. Eur J Soil Biol, 2012,53:76-85. |
[18] | Li YL, Fan XR, Shen QR . The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Plant Cell Environ, 2008,31(1):73-85. |
[19] | Inceoğlu O, Salles JF, van Overbeek L, van Elsas JD. Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Appl Environ Microbiol, 2010,76(11):3675-3684. |
[20] | Lu GH, Tang CY, Hua XM, Cheng J, Wang GH, Zhu YL, Zhang LY, Shou HX, Qi JL, Yang YH . Effects of an EPSPS-transgenic soybean line ZUTS31 on root-associated bacterial communities during field growth. PLoS One, 2018,13(2):e0192008. |
[21] | Lu GH, Zhu YL, Kong LR, Cheng J, Tang CY, Hua XM, Meng FF, Pang YJ, Yang RW, Qi JL, Yang YH . Impact of a glyphosate-tolerant soybean line on the rhizobacteria, revealed by Illumina MiSeq. J Microbiol Biotechnol, 2017,27(3):561-572. |
[22] | Wen ZL, Yang MK, Du MH, Zhong ZZ, Lu YT, Wang GH, Hua XM, Fazal A, Mu CH, Yan SF, Zhen Y, Yang RW, Qi JL, Hong Z, Lu GH, Yang YH . Enrichments/derichments of root-associated bacteria related to plant growth and nutrition caused by the growth of an EPSPS-transgenic maize line in the field. Front Microbiol, 2019,10:1335. |
[23] | Kennedy K, Hall MW, Lynch MDJ, Moreno-Hagelsieb G, Neufeld JD . Evaluating bias of illumina-based bacterial 16S rRNA gene profiles. Appl Environ Microbiol, 2014,80(18):5717-5722. |
[24] | Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R . Ultra- high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J, 2012,6(8):1621-1624. |
[25] | Kozich JJ, Westcott S L, Baxter NT, Highlander SK, Schloss PD . Development of a dual-Index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol, 2013,79(17):5112-5120. |
[26] | Lu GH, Hua XM, Liang L, Wen ZL, Du MH, Meng FF, Pang YJ, Qi JL, Tang CY, Yang YH . Identification of major rhizobacterial taxa affected by a glyphosate-tolerant soybean line via shotgun metagenomic approach. Genes, 2018,9(4):214. |
[27] | Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 2010,7(5):335-336. |
[28] | Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF . Introducing mothur: open-source, platform- independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol, 2009,75(23):7537-7541. |
[29] | Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, McHardy AC, Schulze-Lefert P. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe, 2015,17(3):392-403. |
[30] | Liu YX, Qin Y, Guo XX, Bai Y . Methods and applications for microbiome data analysis. Hereditas(Beijing), 2019,41(9):845-862. |
刘永鑫, 秦媛, 郭晓璇, 白洋 . 微生物组数据分析方法与应用. 遗传, 2019,41(9):845-862. | |
[31] | Whittaker RH . Vegetation of the siskiyou mountains, oregon and california. Ecol Monogr, 1960,30(4):280-338. |
[32] | Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R . Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC genomics, 2012,13:162. |
[33] | Franche C, Lindström K, Elmerich C . Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil, 2008,321(1-2):35-59. |
[34] | Masson-Boivin C, Giraud E, Perret X, Batut J . Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol, 2009,17(10):458-466. |
[35] | Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ . Bacterial associations with legumes. Crit Rev Plant Sci, 2014,34(1-3):17-42. |
[36] | Zaki SS, Belal EEE, Rady MM . Cyanobacteria and glutathione applications improve productivity, nutrient contents, and antioxidant systems of salt-stressed soybean plant. Int Lett Nat Sci, 2019,76:72-85. |
[37] | Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC . Global patterns in belowground communities. Ecol Lett, 2009,12(11):1238-1249. |
[38] | Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 2012,488(7409):91-95. |
[39] | Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL . Defining the core Arabidopsis thaliana root microbiome. Nature, 2012,488(7409):86-90. |
[40] | Schlaeppi K, Dombrowski N, Oter RG, van Themaat EVL, Schulze-Lefert P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci USA, 2014,111(2):585-592. |
[41] | Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V . Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA, 2015,112(8):E911-920. |
[42] | Hu YL, Dai R, Liu YX, Zhang JY, Hu B, Chu CC, Yuan HB, Bai Y . Analysis of rice root bacterial microbiota of nipponbare and ir24. Hereditas(Beijing), 2020,42(5):506-518. |
胡雅丽, 戴睿, 刘永鑫, 张婧赢, 胡斌, 储成才, 袁怀波, 白洋 . 水稻典型品种日本晴和IR24根系微生物组的解析. 遗传, 2020,42(5):506-518. | |
[43] | Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P . Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol, 2001,67(2):725-732. |
[44] | Huang SC, Wang XD, Liu X, He GH, Wu JC . Isolation, identification, and characterization of an aluminum- tolerant bacterium Burkholderia sp. SB1 from an acidic red soil. Pedosphere, 2018,28(6):905-912. |
[45] | De Filippis F, La Storia A, Villani F, Ercolini D . Strain-level diversity analysis of Pseudomonas fragi after in situ pangenome reconstruction shows distinctive spoilage-associated metabolic traits clearly selected by different storage conditions. Appl Environ Microbiol, 2018,85(1):e02212-e02218 |
[46] | Stanborough T, Fegan N, Powell SM, Tamplin M, Chandry PS . Vibrioferrin production by the food spoilage bacterium Pseudomonas fragi. FEMS Microbiol Lett, 2018,365(6). |
[47] | Lodwig EM, Hosie AHF, Bourdès A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS . Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature, 2003,422(6933):722-726. |
[48] | Zhang Y, Wang XJ, Wang WQ, Sun ZT, Li J . Investigation of growth kinetics and partial denitrification performance in strain Acinetobacter johnsonii under different environmental conditions. R Soc Open Sci, 2019,6(12):191275. |
[49] | Wen G, Wang T, Li K, Wang HY, Wang JY, Huang TL . Aerobic denitrification performance of strain Acinetobacter johnsonii WGX-9 using different natural organic matter as carbon source: Effect of molecular weight. Water Res, 2019,164:114956. |
[50] | Menuet M, Bittar F, Stremler N, Dubus JC, Sarles J, Raoult D, Rolain JM . First isolation of two colistin- resistant emerging pathogens, Brevundimonas diminuta and Ochrobactrum anthropi, in a woman with cystic fibrosis: a case report. J Med Case Rep, 2008,2:373. |
[51] | Singh N, Marwa N, Mishra SK, Mishra J, Verma PC, Rathaur S, Singh N . Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L. Ecotoxicol Environ Saf, 2016,125:25-34. |
[52] | Liu G, Liu YX, Ali T, Ferreri M, Gao J, Chen W, Yin JH, Su JL, Fanning S, Han B . Molecular and phenotypic characterization of Aerococcus viridans associated with subclinical bovine mastitis. PLoS One, 2015,10(4):e0125001. |
[53] | Busse HJ . Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Microbiol, 2016,66(1):9-37. |
[54] | Borodina E, Kelly DP, Schumann P, Rainey FA, Ward-Rainey NL, Wood AP . Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans sp. nov. Arch Microbiol, 2002,177(2):173-183. |
[55] | Li ZF, Feng ZL, Zhao LH, Shi YQ, Feng HJ, Zhu HQ . Effects of transgenic cotton expressing chitinase and glucanase genes on the diversity of soil bacterial community. Hereditas (Beijing), 2015,37(8):821-827. |
李志芳, 冯自力, 赵丽红, 师勇强, 冯鸿杰, 朱荷琴 . 转几丁质酶和葡聚糖酶双价基因棉花对土壤细菌种群多样性的影响. 遗传, 2015,37(8):821-827. |
[1] | 李志芳, 冯自力, 赵丽红, 师勇强, 冯鸿杰, 朱荷琴. 转几丁质酶和葡聚糖酶双价基因棉花对土壤细菌种群多样性的影响[J]. 遗传, 2015, 37(8): 821-827. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: