[1] |
Schito M, Migliori GB, Fletcher HA, McNerney R,Centis R,D'Ambrosio L,Bates M,Kibiki G,Kapata N,Corrah T,Bomanji J,Vilaplana C,Johnson D,Mwaba P,Maeurer M,Zumla A,. Perspectives on advances in tuberculosis diagnostics, drugs, and vaccines. Clin Infect Dis, 2015, 61(Suppl 3):S102-S118.
doi: 10.1093/cid/civ609
|
[2] |
World Health Organization. Global tuberculosis report. 2021.
|
[3] |
Zhang Y, Cen J, Jia ZL, Hsiao CD, Xia Q, Wang X, Chen XQ, Wang RC, Jiang ZZ, Zhang LY, Liu KC. Hepatotoxicity induced by isoniazid-lipopolysaccharide through endoplasmic reticulum stress, autophagy, and apoptosis pathways in zebrafish. Antimicrob Agents Chemother, 2019, 63(5):e01639-18.
|
[4] |
Lee KK, Fujimoto K, Zhang C, Schwall CT, Alder NN, Pinkert CA, Krueger W, Rasmussen T, Boelsterli UA. Isoniazid-induced cell death is precipitated by underlying mitochondrial complex I dysfunction in mouse hepatocytes. Free Radic Biol Med, 2013, 65:584-594.
doi: 10.1016/j.freeradbiomed.2013.07.038
|
[5] |
Wang PC, Pradhan K, Zhong XB, Ma XC. Isoniazid metabolism and hepatotoxicity. Acta Pharm Sin B, 2016, 6(5):384-392.
doi: 10.1016/j.apsb.2016.07.014
|
[6] |
Metushi IG, Cai P, Zhu X, Nakagawa T, Uetrecht JP. A fresh look at the mechanism of isoniazid-induced hepatotoxicity. Clin Pharmacol Ther, 2011, 89(6):911-914.
doi: 10.1038/clpt.2010.355
pmid: 21412230
|
[7] |
Huang YS. Recent progress in genetic variation and risk of antituberculosis drug-induced liver injury. J Chin Med Assoc, 2014, 77(4):169-173.
doi: 10.1016/j.jcma.2014.01.010
|
[8] |
Metushi I, Uetrecht J, Phillips E. Mechanism of isoniazid- induced hepatotoxicity: then and now. Br J Clin Pharmacol, 2016, 81(6):1030-1036.
doi: 10.1111/bcp.12885
pmid: 26773235
|
[9] |
Huang YS, Chern HD, Su WJ, Wu JC, Lai SL, Yang SY, Chang FY, Lee SD. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology, 2002, 35(4):883-889.
doi: 10.1053/jhep.2002.32102
|
[10] |
Ng CS, Hasnat A, Maruf AA, Ahmed MU, Pirmohamed M, Day CP, Aithal GP, Daly AK. N-acetyltransferase 2 (NAT2) genotype as a risk factor for development of drug-induced liver injury relating to antituberculosis drug treatment in a mixed-ethnicity patient group. Eur J Clin Pharmacol, 2014, 70(9):1079-1086.
doi: 10.1007/s00228-014-1703-0
|
[11] |
Huang YS, Chern HD, Su WJ, Wu JC, Chang SC, Chiang CH, Chang FY, Lee SD. Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology, 2003, 37(4):924-930.
doi: 10.1053/jhep.2003.50144
|
[12] |
Chen YS, Lun ATL, Smyth GK. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res, 2016, 5:1438.
|
[13] |
Zhou GY, Soufan O, Ewald J, Hancock REW, Basu N, Xia JG. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res, 2019, 47(W1):W234-W241.
doi: 10.1093/nar/gkz240
|
[14] |
Chen T, Liu YX, Huang LQ. ImageGP: An easy-to-use data visualization web server for scientific researchers. iMeta, 2022, 1(1):e5.
|
[15] |
Kumar L, Futschik ME. Mfuzz: A software package for soft clustering of microarray data. Bioinformation, 2007, 2(1):5-7.
doi: 10.6026/97320630002005
|
[16] |
Futschik ME, Carlisle B. Noise-robust soft clustering of gene expression time-course data. J Bioinform Comput Biol, 2005, 3(4):965-988.
doi: 10.1142/S0219720005001375
|
[17] |
Zhou YY, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems- level datasets. Nat Commun, 2019, 10(1):1523.
doi: 10.1038/s41467-019-09234-6
|
[18] |
Conesa A, Nueda MJ, Ferrer A, Talón M. maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics, 2006, 22(9):1096-1102.
pmid: 16481333
|
[19] |
Fontana RJ. Pathogenesis of idiosyncratic drug-induced liver injury and clinical perspectives. Gastroenterology, 2014, 146(4):914-928.
doi: 10.1053/j.gastro.2013.12.032
pmid: 24389305
|
[20] |
Boelsterli UA, Lee KK. Mechanisms of isoniazid-induced idiosyncratic liver injury: Emerging role of mitochondrial stress. J Gastroenterol Hepatol, 2014, 29(4):678-687.
doi: 10.1111/jgh.12516
|
[21] |
Wiesel-Motiuk N, Assaraf YG. The key roles of the lysine acetyltransferases KAT6A and KAT6B in physiology and pathology. Drug Resist Updat, 2020, 53:100729.
doi: 10.1016/j.drup.2020.100729
|
[22] |
Jin Y, Yang RN, Ding JY, Zhu FQ, Zhu CL, Xu QG, Cai JZ. KAT6A is associated with sorafenib resistance and contributes to progression of hepatocellular carcinoma by targeting YAP. Biochem Biophys Res Commun, 2021, 585:185-190.
doi: 10.1016/j.bbrc.2021.09.009
|
[23] |
Takeda T, Banno K, Okawa R, Yanokura M, Iijima M, Irie-Kunitomi H, Nakamura K, Iida M, Adachi M, Umene K, Nogami Y, Masuda K, Kobayashi Y, Tominaga E, Aoki D. ARID1A gene mutation in ovarian and endometrial cancers (Review). Oncol Rep, 2016, 35(2):607-613.
doi: 10.3892/or.2015.4421
|
[24] |
Li WP, Yang LG, He Q, Hu CB, Zhu LY, Ma XL, Ma XY, Bao SJ, Li L, Chen YY, Deng X, Zhang X, Cen J, Zhang L, Wang Z, Xie WF, Li H, Li YX, Hui LJ. A homeostatic Arid1a-dependent permissive chromatin state licenses hepatocyte responsiveness to liver-injury-associated YAP signaling. Cell Stem Cell, 2019, 25(1): 54-68.e5.
doi: 10.1016/j.stem.2019.06.008
|
[25] |
Mirman Z, de Lange T. 53BP1: a DSB escort. Genes Dev, 2020, 34(1-2):7-23.
doi: 10.1101/gad.333237.119
|
[26] |
Shibata A, Jeggo PA. Roles for 53BP1 in the repair of radiation-induced DNA double strand breaks. DNA Repair (Amst), 2020, 93:102915.
doi: 10.1016/j.dnarep.2020.102915
|
[27] |
Tang XZ, Guo MJ, Ding PG, Deng ZD, Ke MY, Yuan YX, Zhou YY, Lin ZG, Li MX, Gu CY, Gu XS, Yang Y. BUB1B and circBUB1B_544aa aggravate multiple myeloma malignancy through evoking chromosomal instability. Signal Transduct Target Ther, 2021, 6(1):361.
doi: 10.1038/s41392-021-00746-6
|
[28] |
Xu MJ, Yao J, Shi YC, Yi HJ, Zhao WK, Lin XH, Yang ZZ. The SRCAP chromatin remodeling complex promotes oxidative metabolism during prenatal heart development. Development, 2021, 148(8): dev199026.
|
[29] |
Gopisetty G, Thangarajan R. Mammalian mitochondrial ribosomal small subunit (MRPS) genes: A putative role in human disease. Gene, 2016, 589(1):27-35.
doi: S0378-1119(16)30365-1
pmid: 27170550
|