遗传 ›› 2024, Vol. 46 ›› Issue (9): 737-749.doi: 10.16288/j.yczz.24-064
奥倩倩(), 陆方筱(
), 杨柳卿, 李春, 翟增康, 贾东晔, 江元清, 杨博(
)
收稿日期:
2024-03-12
修回日期:
2024-08-08
出版日期:
2024-09-20
发布日期:
2024-08-23
通讯作者:
杨博,博士,副教授,研究方向:植物抗逆分子遗传学。E-mail: yangwl@nwafu.edu.cn作者简介:
奥倩倩,硕士研究生,专业方向:植物分子遗传。E-mail: 2628605169@qq.com;奥倩倩与陆方筱并列第一作者。
基金资助:
Qianqian Ao(), Fangxiao Lu(
), Liuqing Yang, Chun Li, Zengkang Zhai, Dongye Jia, Yuanqing Jiang, Bo Yang(
)
Received:
2024-03-12
Revised:
2024-08-08
Published:
2024-09-20
Online:
2024-08-23
Supported by:
摘要:
甘蓝型油菜(Brassica napus L.)是重要的油料作物之一,但是其种植效益在西北地区经常受到干旱等环境逆境的影响。脱落酸(abscisic acid,ABA)信号通路在植物对非生物胁迫的响应与耐受中具有重要作用,而ABFs/AREBs(ABA-responsive element binding factors/ABA-responsive element binding proteins)是调控ABA响应基因表达的核心转录因子。为了解析油菜响应逆境的关键转录因子,本研究首先对甘蓝型油菜转录因子BnaABI5(abscisic acid insensitive 5)进行了亚细胞定位、逆境响应及组织器官表达的检测、转录活性分析以及与激酶BnaMPKs(mitogen-activated protein kinases)的互作筛选。结果显示:BnaABI5-GFP融合蛋白定位于细胞核,该基因响应干旱逆境且主要在油菜的根中表达,并且在酵母体系中呈现出一定的转录激活活性;随后利用烟草瞬时表达体系发现BnaABI5能够激活靶标基因EM6(early methionine-labeled 6)的启动子活性。通过双分子荧光互补(bimolecular fluorescence complementation,BiFC)及酵母双杂交(yeast two-hybrid,Y2H)实验,发现BnaABI5与BnaMPK6及BnaMPK13互作。本研究初步探索了转录因子BnaABI5的表达特征及与BnaMPKs的互作,对于深入理解BnaABI5的功能具有一定的指导意义。
奥倩倩, 陆方筱, 杨柳卿, 李春, 翟增康, 贾东晔, 江元清, 杨博. 甘蓝型油菜转录因子BnaABI5表达特征分析及互作蛋白鉴定[J]. 遗传, 2024, 46(9): 737-749.
Qianqian Ao, Fangxiao Lu, Liuqing Yang, Chun Li, Zengkang Zhai, Dongye Jia, Yuanqing Jiang, Bo Yang. Analysis of expression characteristics and identification of interaction proteins of transcription factor BnaABI5 in Brassica napus[J]. Hereditas(Beijing), 2024, 46(9): 737-749.
[1] |
Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot, 2011, 62(14): 4731-4748.
doi: 10.1093/jxb/err210 pmid: 21737415 |
[2] | Zhang JH, Jia WS, Yang JC, Ismail AM. Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res, 2006, 97(1): 111-119. |
[3] | Verma V, Ravindran P, Kumar PP. Plant hormone- mediated regulation of stress responses. Bmc Plant Biol, 2016, 16: 86. |
[4] |
Busk PK, Pagès M. Regulation of abscisic acid-induced transcription. Plant Mol Biol, 1998, 37(3): 425-435.
doi: 10.1023/a:1006058700720 pmid: 9617810 |
[5] |
Hattori T, Totsuka M, Hobo T, Kagaya Y, Yamamoto-Toyoda A. Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol, 2002, 43(1): 136-140.
doi: 10.1093/pcp/pcf014 pmid: 11828032 |
[6] |
Choi HI, Hong JH, Ha JO, Kang JY, Kim SY. ABFs, a family of ABA-responsive element binding factors. J Biol Chem, 2000, 275(3): 1723-1730.
doi: 10.1074/jbc.275.3.1723 pmid: 10636868 |
[7] |
Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA, 2000, 97(21): 11632-11637.
doi: 10.1073/pnas.190309197 pmid: 11005831 |
[8] | Jakoby M, Weisshaar B, Dröge-Laser W, Vicente- Carbajosa J, Tiedemann J, Kroj T, Parcy F, bZIP Research Group. bZIP transcription factors in Arabidopsis. Trends Plant Sci, 2002, 7(3): 106-111. |
[9] | Kang JY, Choi HI, Im MY, Kim SY. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell, 2002, 14(2): 343-357. |
[10] | Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 2005, 17(12): 3470-3488. |
[11] |
Skubacz A, Daszkowska-Golec A, Szarejko I. The role and regulation of ABI5 (ABA-Insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. Front Plant Sci, 2016, 7: 1884.
doi: 10.3389/fpls.2016.01884 pmid: 28018412 |
[12] |
Brocard IM, Lynch TJ, Finkelstein RR. Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol, 2002, 129(4): 1533-1543.
doi: 10.1104/pp.005793 pmid: 12177466 |
[13] | Xu DQ, Li JG, Gangappa SN, Hettiarachchi C, Lin F, Andersson MX, Jiang Y, Deng XW, Holm M. Convergence of light and ABA signaling on the ABI5 promoter. PLoS Genet, 2014, 10(2): e1004197. |
[14] | Li XH, Yang R, Gong YF, Chen HM. The Arabidopsis mediator complex subunit MED19a is involved in ABI5-mediated ABA responses. J Plant Biol, 2018, 61(2): 97-110. |
[15] | Ji HT, Wang SF, Cheng CH, Li R, Wang ZJ, Jenkins GI, Kong FJ, Li X. The RCC1 family protein SAB1 negatively regulates ABI5 through multidimensional mechanisms during postgermination in Arabidopsis. New Phytol, 2019, 222(2): 907-922. |
[16] |
Rodriguez MCS, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol, 2010, 61: 621-649.
doi: 10.1146/annurev-arplant-042809-112252 pmid: 20441529 |
[17] |
Neill S, Desikan R, Hancock J. Hydrogen peroxide signalling. Curr Opin Plant Biol, 2002, 5(5): 388-395.
doi: 10.1016/s1369-5266(02)00282-0 pmid: 12183176 |
[18] | Popescu SC, Popescu GV, Bachan S, Zhang ZM, Gerstein M, Snyder M, Dinesh-Kumar SP. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev, 2009, 23(1): 80-92. |
[19] |
Pitzschke A. Modes of MAPK substrate recognition and control. Trends Plant Sci, 2015, 20(1): 49-55.
doi: 10.1016/j.tplants.2014.09.006 pmid: 25301445 |
[20] |
Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J, 2008, 413(2): 217-226.
doi: 10.1042/BJ20080625 pmid: 18570633 |
[21] | Guo T, Chen K, Dong NQ, Shi CL, Ye WW, Gao JP, Shan JX, Lin HX. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell, 2018, 30(4): 871-888. |
[22] |
Meng XZ, Zhang SQ. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol, 2013, 51: 245-266.
doi: 10.1146/annurev-phyto-082712-102314 pmid: 23663002 |
[23] |
Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhardt N, Ellis BE, Murata Y, Kwak JM. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci USA, 2009, 106(48): 20520-20525.
doi: 10.1073/pnas.0907205106 pmid: 19910530 |
[24] | Xing Y, Jia WS, Zhang JH. AtMKK1 mediates ABA- induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J, 2008, 54(3): 440-451. |
[25] | Zong XJ, Li DP, Gu LK, Li DQ, Liu LX, Hu XL. Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta, 2009, 229(3): 485-495. |
[26] | Zhang AY, Zhang J, Ye NH, Cao JM, Tan MP, Zhang JH, Jiang MY. ZmMPK5 is required for the NADPH oxidase-mediated self-propagation of apoplastic H2O2 in brassinosteroid-induced antioxidant defence in leaves of maize. J Exp Bot, 2010, 61(15): 4399-4411. |
[27] | Li K, Yang FB, Zhang GZ, Song SF, Li Y, Ren DT, Miao YC, Song CP. AIK1, A Mitogen-Activated Protein Kinase, modulates abscisic acid responses through the MKK5- MPK6 kinase cascade. Plant Physiol, 2017, 173(2): 1391-1408. |
[28] | Li YY, Cai HX, Liu P, Wang CY, Gao HY, Wu CG, Yan K, Zhang SZ, Huang JG, Zheng CC. Arabidopsis MAPKKK18 positively regulates drought stress resistance via downstream MAPKK3. Biochem Biophys Res Commun, 2017, 484(2): 292-297. |
[29] | Danquah A, De Zélicourt A, Boudsocq M, Neubauer J, Frei Dit Frey N, Leonhardt N, Pateyron S, Gwinner F, Tamby JP, Ortiz-Masia D, Marcote MJ, Hirt H, Colcombet J. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. Plant J, 2015, 82(2): 232-244. |
[30] |
Ma FF, Ni L, Liu LB, Li X, Zhang H, Zhang AY, Tan MP, Jiang MY. ZmABA2, an interacting protein of ZmMPK5, is involved in abscisic acid biosynthesis and functions. Plant Biotechnol J, 2016, 14(2): 771-782.
doi: 10.1111/pbi.12427 pmid: 26096642 |
[31] | Niu FF, Wang C, Yan JL, Guo XH, Wu FF, Yang B, Deyholos MK, Jiang YQ. Functional characterization of NAC55 transcription factor from oilseed rape (Brassica napus L.) as a novel transcriptional activator modulating reactive oxygen species accumulation and cell death. Plant Mol Biol, 2016, 92(1-2): 89-104. |
[32] | Liang WW, Yang B, Yu BJ, Zhou ZL, Li C, Jia M, Sun Y, Zhang Y, Wu FF, Zhang HF, Wang BY, Deyholos MK, Jiang YQ. Identification and analysis of MKK and MPK gene families in canola (Brassica napus L.). BMC Genomics, 2013, 14(1): 392. |
[33] | Sun Y, Wang C, Yang B, Wu FF, Hao XY, Liang WW, Niu FF, Yan JL, Zhang HF, Wang BY, Deyholos MK, Jiang YQ. Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.). J Exp Bot, 2014, 65(8): 2171-2188. |
[34] | Zhang HF, Liu WZ, Zhang YP, Deng M, Niu FF, Yang B, Wang XL, Wang BY, Liang WW, Deyholos MK, Jiang YQ. Identification, expression and interaction analyses of calcium-dependent protein kinase (CPK) genes in canola (Brassica napus L.). BMC Genomics, 2014, 15: 211. |
[35] | Yao LF, Yang B, Xian BS, Chen BS, Yan JL, Chen QQ, Gao SD, Zhao PY, Han F, Xu JW, Jiang YQ. The R2R3-MYB transcription factor BnaMYB111L from rapeseed modulates reactive oxygen species accumulation and hypersensitive-like cell death. Plant Physiol Biochem, 2020, 147: 280-288. |
[36] | Batool M, El-Badri AM, Hassan MU, Yang HY, Wang CY, Yan ZK, Kuai J, Wang B, Zhou GS. Drought stress in Brassica napus: effects, tolerance mechanisms, and management strategies. J Plant Growth Regul, 2023, 42(1): 21-45. |
[37] | Finkelstein RR, Gampala SSL, Rock CD. Abscisic acid signaling in seeds and seedlings. Plant Cell, 2002, 14 Suppl(Suppl): S15-S45. |
[38] |
Lopez-Molina L, Chua NH. A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol, 2000, 41(5): 541-547.
doi: 10.1093/pcp/41.5.541 pmid: 10929936 |
[39] |
Finkelstein RR, Lynch TJ. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell, 2000, 12(4): 599-609.
doi: 10.1105/tpc.12.4.599 pmid: 10760247 |
[40] | Lopez-Molina L, Mongrand S, Chua NH. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA, 2001, 98(8): 4782-4787. |
[41] | Bi C, Ma Y, Wu Z, Yu YT, Liang S, Lu K, Wang XF. Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination. Plant Mol Biol, 2017, 94(1-2): 197-213. |
[42] | Huang Y, Sun MM, Ye Q, Wu XQ, Wu WH, Chen YF. Abscisic acid modulates seed germination via ABA INSENSITIVE5-mediated PHOSPHATE1. Plant Physiol, 2017, 175(4): 1661-1668. |
[43] | An JP, Zhang XW, Liu YJ, Wang XF, You CX, Hao YJ. ABI5 regulates ABA-induced anthocyanin biosynthesis by modulating the MYB1-bHLH3 complex in apple. J Exp Bot, 2021, 72(4): 1460-1472. |
[44] | Carles C, Bies-Etheve N, Aspart L, Léon-Kloosterziel KM, Koornneef M, Echeverria M, Delseny M. Regulation of Arabidopsis thaliana Em genes: role of ABI5. Plant J, 2002, 30(3): 373-383. |
[45] |
Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K. Three Arabidopsis SnRK2 protein kinases, SRK2D/ SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol, 2009, 50(7): 1345-1363.
doi: 10.1093/pcp/pcp083 pmid: 19541597 |
[46] | Menges M, Dóczi R, Ökrész L, Morandini P, Mizzi L, Soloviev M, Murray JAH, Bögre L. Comprehensive gene expression atlas for the Arabidopsis MAP kinase signalling pathways. New Phytol, 2008, 179(3): 643-662. |
[47] | Wang RS, Pandey S, Li S, Gookin TE, Zhao ZX, Albert R, Assmann SM. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics, 2011, 12: 216. |
[48] |
Lu C, Han MH, Guevara-Garcia A, Fedoroff NV. Mitogen- activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Natl Acad Sci USA, 2002, 99(24): 15812-15817.
doi: 10.1073/pnas.242607499 pmid: 12434021 |
[1] | 林建辉, 刘自广, 张楠, 严容, 张楠, 何鑫淼, 王文涛, 刘娣, 吴娟. 拟南芥ABI5基因对BR胁迫响应及其对下胚轴生长的调节作用[J]. 遗传, 2021, 43(9): 901-909. |
[2] | 王峰,官春云. 甘蓝型油菜遗传图谱的构建及单株产量构成因素的QTL分析[J]. 遗传, 2010, 32(3): 271-277. |
[3] | 马爱芬,王雯,李加纳,谌利,王家丰,刘列钊. 甘蓝型油菜种子发芽率QTL定位及相关生理性状[J]. 遗传, 2009, 31(2): 206-212. |
[4] | 姜淑慧,管荣展,唐三元,忻如颖,张红生,赵立茜,潘琴燕. 甘蓝型油菜与蔊菜的原生质体融合与植株再生[J]. 遗传, 2007, 29(6): 745-745―750. |
[5] | 袁晓萌,周云涛,张红岩,薛华,周琳,赵云. 甘蓝型油菜小核糖核蛋白BnSmD1编码区全长cDNA 的克隆与表达分析[J]. 遗传, 2007, 29(12): 1525-1528. |
[6] | 梅德圣,王汉中,李云昌,胡琼,李英德,徐育松. 甘蓝型油菜矮秆突变材料99CDAM的发现及遗传分析 [J]. 遗传, 2006, 28(7): 851-857. |
[7] | 陈碧云,伍晓明,陆光远,高桂珍,许鲲,李响枝. 甘蓝型油菜花瓣缺失基因的图谱定位[J]. 遗传, 2006, 28(6): 707-712. |
[8] | 王艳惠,牛应泽. 人工合成甘蓝型油菜特长角性状的遗传分析[J]. 遗传, 2006, 28(10): 1273-1279. |
[9] | 蔺兴武,吴建国,石春海. 远缘杂交油菜核不育系的创建及其细胞学和形态学研究[J]. 遗传, 2005, 27(3): 403-409. |
[10] | 吴建国,石春海,蔺兴武,李再云,傅廷栋. 甘蓝型油菜与诸葛菜属间杂种后代非整倍体类型及细胞遗传学研究[J]. 遗传, 2004, 26(6): 917-921. |
[11] | 于澄宇,胡胜武,张春红,俞延军. 一种花色突变雄性不育油菜的发现The[J]. 遗传, 2004, 26(3): 0-294. |
[12] | 刘雪平,刘志文,涂金星,陈宝元,傅廷栋. 甘蓝型油菜小孢子培养技术的几项改进[J]. 遗传, 2003, 25(4): 433-436. |
[13] | 危文亮. 甘蓝型油菜长角果变异体的遗传研究[J]. 遗传, 2000, 22(2): 93-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: