遗传 ›› 2025, Vol. 47 ›› Issue (5): 546-557.doi: 10.16288/j.yczz.24-259
廖怡然1(), 张其奥1, 李佩波2(
), 谢建平1,2(
)
收稿日期:
2024-10-30
修回日期:
2024-12-31
出版日期:
2025-05-20
发布日期:
2025-01-06
通讯作者:
谢建平,博士,研究员,研究方向:结核分枝杆菌等重要病原致病耐药机理与新防控措施研发。E-mail: georgex@swu.edu.cn;作者简介:
廖怡然,硕士研究生,专业方向:微生物感染与免疫。E-mail: 1668704934@qq.com
基金资助:
Yiran Liao1(), Qiao Zhang1, Peibo Li2(
), Jianping Xie1,2(
)
Received:
2024-10-30
Revised:
2024-12-31
Published:
2025-05-20
Online:
2025-01-06
Supported by:
摘要:
Ubiquitin-fold modifier 1 (UFM1)是一种在原核生物和大多数真核生物中广泛存在的I型类泛素蛋白,其介导的UFMylaiton修饰参与调节多种细胞生化过程。近年来UFM1系统在内质网稳态调节中的重要性被逐步发现和重视。结核分枝杆菌感染引发的内质网应激是结核病发病进程的重要环节,因而UFM1系统有望成为抗结核治疗药物研发的新靶标。本文对UFM1系统和其介导的UFMylation途径进行了介绍,并重点综述了UFM1系统参与内质网稳态调节的最新进展及其在结核病治疗中的潜在价值,以期为开发新型抗结核治疗方法提供新的方向。
廖怡然, 张其奥, 李佩波, 谢建平. UFMylation类泛素修饰在结核分枝杆菌感染免疫中的作用与机理[J]. 遗传, 2025, 47(5): 546-557.
Yiran Liao, Qiao Zhang, Peibo Li, Jianping Xie. The role and mechanism of UFMylation, a ubiquitin-like modification, in Mycobacterium tuberculosis infection immunity[J]. Hereditas(Beijing), 2025, 47(5): 546-557.
表1
CDK5RAP3参与的信号通路"
信号通路 | 通路功能 | CDK5RAP3扮演的角色 | 参考文献 |
---|---|---|---|
Wnt/β-catenin 信号通路 | 在胚胎发育、组织再生和干细胞维持的多个阶段发挥重要作用,其异常激活与多种类型的癌症相关 | 通过磷酸化GSK-3β抑制β-catenin,从而抑制胃癌发生 | [ |
通过Akt/GSK-3β使Wnt/β-catenin通路失活,从而抑制类甲状腺癌的发生 | [ | ||
通过抑制胃癌细胞AKT磷酸化抑制Wnt/β-catenin信号传导,从而抑制胃癌发生 | [ | ||
蛋白激酶ERK信号通路 | 参与调控细胞周期和细胞分化,细胞响应外界刺激的必需途径 | 作为抑瘤因子,在ERK1/2信号通路调控下抑制胃癌干细胞样细胞的自我更新 | [ |
血管内皮生长因子(VEGF) 信号通路 | 在血管的形成和生长过程中起着重要作用。VEGF在新生血管形成过程中诱导基因表达,调控血管通透性并促进细胞的迁移、增殖和存活 | 抑制AKT/HIF-1α/VEGFA信号传导,从而抑制胃神经内分泌癌血管生成 | [ |
信号转导与转录激活因子3(STAT3)信号通路 | 调节细胞周期蛋白和抗凋亡因子,促进细胞增殖和存活 | 通过与TSPAN6相互作用调控STAT3信号通路,影响胶质母细胞瘤的恶性发展 | [ |
表2
宿主或病原体编码的UB/UBL特异性蛋白酶"
类别 | 泛素/类泛素蛋白 | 靶向/编码蛋白病原体 | 蛋白功能 | 生理学效应 | 参考文献 |
---|---|---|---|---|---|
宿主编码 | USP18 | 淋巴细胞脉络丛脑膜炎病毒 | 去ISG化 | 调节干扰素信号传导 | [ |
水疱性口炎病毒 | |||||
USP7 | I型单纯疱疹病毒 | 去泛素化 | 稳定ICP0蛋白 | [ | |
EB病毒 | 稳定EBNA1蛋白; 调控其复制功能 | [ | |||
CYLD | 不可分型流感嗜血杆菌 | 去泛素化 | 负调控NF-kB依赖性炎症 | [ | |
肺炎链球菌 | 急性肺损伤,死亡率增加 | [ | |||
大肠杆菌 | 负调控NF-kB依赖性炎症 | [ | |||
病原体编码 | AvrA | 沙门氏菌属 | 去泛素化 | 抑制宿主炎症反应 | [ |
SseL | 沙门氏菌属 | 去泛素化 | 延缓巨噬细胞杀伤 | [ | |
YopJ | 耶尔森氏菌属 | 乙酰化、 去泛素化、 去SUMO化 | 抑制宿主炎症反应 | [ | |
ChlaDub1 ChlaDub2 | 沙眼衣原体 | 去泛素化、 去NEDD化 | 未知 | [ | |
ElaD | 大肠杆菌 | 去泛素化 | 未知 | [ |
[1] |
Walczak CP, Leto DE, Zhang LC, Riepe C, Muller RY, Darosa PA, Ingolia NT, Elias JE, Kopito RR. Ribosomal protein RPL26 is the principal target of UFMylation. Proc Natl Acad Sci USA, 2019, 116(4): 1299-1308.
pmid: 30626644 |
[2] |
Wang LH, Xu Y, Rogers H, Saidi L, Noguchi CT, Li HL, Yewdell JW, Guydosh NR, Ye YH. UFMylation of RPL26 links translocation-associated quality control to endoplasmic reticulum protein homeostasis. Cell Res, 2020, 30(1): 5-20.
pmid: 31595041 |
[3] | World Health Organization. Global Tuberculosis Report 2023. Geneva: World Health Organization, 2023. |
[4] |
Deng L, Meng T, Chen L, Wei WY, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther, 2020, 5(1): 11.
pmid: 32296023 |
[5] |
Kim I, Xu WJ, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov, 2008, 7(12): 1013-1030.
pmid: 19043451 |
[6] |
Medigeshi GR, Lancaster AM, Hirsch AJ, Briese T, Lipkin WI, Defilippis V, Früh K, Mason PW, Nikolich- Zugich J, Nelson JA. West Nile virus infection activates the unfolded protein response, leading to CHOP induction and apoptosis. J Virol, 2007, 81(20): 10849-10860.
pmid: 17686866 |
[7] |
Williams BL, Lipkin WI. Endoplasmic reticulum stress and neurodegeneration in rats neonatally infected with borna disease virus. J Virol, 2006, 80(17): 8613-8626.
pmid: 16912310 |
[8] |
Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal, 2007, 9(12): 2277-2293.
pmid: 17979528 |
[9] |
Seimon TA, Kim MJ, Blumenthal A, Koo J, Ehrt S, Wainwright H, Bekker LG, Kaplan G, Nathan C, Tabas I, Russell DG. Induction of ER stress in macrophages of tuberculosis granulomas. PLoS One, 2010, 5(9): e12772.
pmid: 20856677 |
[10] |
Picchianti L, De Medina Hernández VS, Zhan N, Irwin NA, Groh R, Stephani M, Hornegger H, Beveridge R, Sawa-Makarska J, Lendl T, Grujic N, Naumann C, Martens S, Richards TA, Clausen T, Ramundo S, Karagöz GE, Dagdas Y. Shuffled ATG8 interacting motifs form an ancestral bridge between UFMylation and autophagy. EMBO J, 2023, 42(10): e112053.
pmid: 36762703 |
[11] |
Liang JR, Lingeman E, Luong T, Ahmed S, Muhar M, Nguyen T, Olzmann JA, Corn JE. A genome-wide ER-phagy screen highlights key roles of mitochondrial metabolism and ER-resident UFMylation. Cell, 2020, 180(6): 1160-1177.e20.
pmid: 32160526 |
[12] |
Zhou XC, Mahdizadeh SJ, Le Gallo M, Eriksson LA, Chevet E, Lafont E. UFMylation: a ubiquitin-like modification. Trends Biochem Sci, 2024, 49(1): 52-67.
pmid: 37945409 |
[13] |
Cappadocia L, Lima CD. Ubiquitin-like protein conjugation: structures, chemistry, and mechanism. Chem Rev, 2018, 118(3): 889-918.
pmid: 28234446 |
[14] |
Komatsu M, Inada T, Noda NN. The UFM1 system: Working principles, cellular functions, and pathophysiology. Mol Cell, 2024, 84(1): 156-169.
pmid: 38141606 |
[15] |
Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding domains-from structures to functions. Nat Rev Mol Cell Biol, 2009, 10(10): 659-671.
pmid: 19773779 |
[16] |
Ishimura R, El-Gowily AH, Noshiro D, Komatsu-Hirota S, Ono Y, Shindo M, Hatta T, Abe M, Uemura T, Lee-Okada HC, Mohamed TM, Yokomizo T, Ueno T, Sakimura K, Natsume T, Sorimachi H, Inada T, Waguri S, Noda NN, Komatsu M. The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3. Nat Commun, 2022, 13(1): 7857.
pmid: 36543799 |
[17] |
Habisov S, Huber J, Ichimura Y, Akutsu M, Rogova N, Loehr F, Mcewan DG, Johansen T, Dikic I, Doetsch V, Komatsu M, Rogov VV, Kirkin V. Structural and functional analysis of a novel interaction motif within UFM1-activating enzyme 5 (UBA5) required for binding to ubiquitin-like proteins and ufmylation. J Biol Chem, 2016, 291(17): 9025-9041.
pmid: 26929408 |
[18] |
Ha BH, Ahn HC, Kang SH, Tanaka K, Chung CH, Kim EE. Structural basis for Ufm1 processing by UfSP1. J Biol Chem, 2008, 283(21): 14893-14900.
pmid: 18321862 |
[19] |
Ha BH, Jeon YJ, Shin SC, Tatsumi K, Komatsu M, Tanaka K, Watson CM, Wallis G, Chung CH, Kim EE. Structure of ubiquitin-fold modifier 1-specific protease UfSP2. J Biol Chem, 2011, 286(12): 10248-10257.
pmid: 21228277 |
[20] |
Komatsu M, Chiba T, Tatsumi K, Iemura SI, Tanida I, Okazaki N, Ueno T, Kominami E, Natsume T, Tanaka K. A novel protein-conjugating system for Ufm1, a ubiquitin- fold modifier. EMBO J, 2004, 23(9): 1977-1986.
pmid: 15071506 |
[21] |
Kang SH, Kim GR, Seong M, Baek SH, Seol JH, Bang OS, Ovaa H, Tatsumi K, Komatsu M, Tanaka K, Chung CH. Two novel ubiquitin-fold modifier 1 (Ufm1)-specific proteases, UfSP1 and UfSP2. J Biol Chem, 2007, 282(8): 5256-5262.
pmid: 17182609 |
[22] |
Oweis W, Padala P, Hassouna F, Cohen-Kfir E, Gibbs DR, Todd EA, Berndsen CE, Wiener R. Trans-binding mechanism of ubiquitin-like protein activation revealed by a UBA5-UFM1 complex. Cell Rep, 2016, 16(12): 3113-3120.
pmid: 27653677 |
[23] |
Bacik JP, Walker JR, Ali M, Schimmer AD, Dhe-Paganon S. Crystal structure of the human ubiquitin-activating enzyme 5 (UBA5) bound to ATP: mechanistic insights into a minimalistic E1 enzyme. J Biol Chem, 2010, 285(26): 20273-20280.
pmid: 20368332 |
[24] |
Tatsumi K, Sou YS, Tada N, Nakamura E, Iemura SI, Natsume T, Kang SH, Chung CH, Kasahara M, Kominami E, Yamamoto M, Tanaka K, Komatsu M. A novel type of E3 ligase for the Ufm1 conjugation system. J Biol Chem, 2010, 285(8): 5417-5427.
pmid: 20018847 |
[25] |
Peter JJ, Magnussen HM, Darosa PA, Millrine D, Matthews SP, Lamoliatte F, Sundaramoorthy R, Kopito RR, Kulathu Y. A non-canonical scaffold-type E3 ligase complex mediates protein UFMylation. EMBO J, 2022, 41(21): e111015.
pmid: 36121123 |
[26] |
Banerjee S, Varga JK, Kumar M, Zoltsman G, Rotem- Bamberger S, Cohen-Kfir E, Isupov MN, Rosenzweig R, Schueler-Furman O, Wiener R. Structural study of UFL1-UFC1 interaction uncovers the role of UFL1 N-terminal helix in ufmylation. EMBO Rep, 2023, 24(12): e56920.
pmid: 37988244 |
[27] |
Ishimura R, Ito S, Mao GX, Komatsu-Hirota S, Inada T, Noda NN, Komatsu M. Mechanistic insights into the roles of the UFM1 E3 ligase complex in ufmylation and ribosome-associated protein quality control. Sci Adv, 2023, 9(33): eadh3635.
pmid: 37595036 |
[28] |
Stephani M, Picchianti L, Gajic A, Beveridge R, Skarwan E, De Medina Hernandez VS, Mohseni A, Clavel M, Zeng YL, Naumann C, Matuszkiewicz M, Turco E, Loefke C, Li BY, Dürnberger G, Schutzbier M, Chen HT, Abdrakhmanov A, Savova A, Chia KS, Djamei A, Schaffner I, Abel S, Jiang LW, Mechtler K, Ikeda F, Martens S, Clausen T, Dagdas Y. A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress. eLife, 2020, 9: e58396.
pmid: 32851973 |
[29] |
Wang JB, Wang ZW, Li Y, Huang CQ, Zheng CH, Li P, Xie JW, Lin JX, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Lin Y, Huang CM. CDK5RAP3 acts as a tumor suppressor in gastric cancer through inhibition of β-catenin signaling. Cancer Lett, 2017, 385: 188-197.
pmid: 27793695 |
[30] |
Feng XL, Jiang J, Sun L, Zhou Q. CDK5RAP3 acts as a putative tumor inhibitor in papillary thyroid carcinoma via modulation of Akt/GSK-3β/Wnt/β-catenin signaling. Toxicol Appl Pharmacol, 2022, 440: 115940.
pmid: 29540196 |
[31] |
Zheng CH, Wang JB, Lin MQ, Zhang PY, Liu LC, Lin JX, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Xie JW, Li P, Huang CM. CDK5RAP3 suppresses Wnt/β-catenin signaling by inhibiting AKT phosphorylation in gastric cancer. J Exp Clin Cancer Res, 2018, 37(1): 59.
pmid: 29540196 |
[32] |
Lin JX, Yoon C, Li P, Ryeom SW, Cho SJ, Zheng CH, Xie JW, Wang JB, Lu J, Chen QY, Yoon SS, Huang CM. CDK5RAP3 as tumour suppressor negatively regulates self-renewal and invasion and is regulated by ERK1/2 signalling in human gastric cancer. Br J Cancer, 2020, 123(7): 1131-1144.
pmid: 32606358 |
[33] |
Lin JX, Weng XF, Xie XS, Lian NZ, Qiu SL, Wang JB, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Yang YH, Liu SJ, Hu M, Lin YK, Huang CM, Zheng CH, Li P, Xie JW. CDK5RAP3 inhibits angiogenesis in gastric neuroendocrine carcinoma by modulating AKT/HIF-1α/VEGFA signaling. Cancer Cell Int, 2019, 19: 282.
pmid: 31728130 |
[34] |
Zhang C, Du FH, Wang RX, Han WB, Lv X, Zeng LH, Chen GQ. TSPAN6 reinforces the malignant progression of glioblastoma via interacting with CDK5RAP3 and regulating STAT3 signaling pathway. Int J Biol Sci, 2024, 20(7): 2440-2453.
pmid: 38725860 |
[35] |
Millrine D, Cummings T, Matthews SP, Peter JJ, Magnussen HM, Lange SM, Macartney T, Lamoliatte F, Knebel A, Kulathu Y. Human UFSP1 is an active protease that regulates UFM1 maturation and UFMylation. Cell Rep, 2022, 40(5): 111168.
pmid: 35926457 |
[36] |
Liang Q, Jin YQ, Xu SW, Zhou JZ, Mao J, Ma XH, Wang M, Cong YS. Human UFSP1 translated from an upstream near-cognate initiation codon functions as an active UFM1-specific protease. J Biol Chem, 2022, 298(6): 102016.
pmid: 35525273 |
[37] |
Xie ST. Characterization, crystallization and preliminary X-ray crystallographic analysis of the human Uba5 C-terminus-Ufc1 complex. Acta Crystallogr F Struct Biol Commun, 2014, 70(Pt 8): 1093-1097.
pmid: 25084390 |
[38] |
Gavin JM, Hoar K, Xu Q, Ma JY, Lin YF, Chen JJ, Chen W, Bruzzese FJ, Harrison S, Mallender WD, Bump NJ, Sintchak MD, Bence NF, Li P, Dick LR, Gould AE, Chen JJ. Mechanistic study of Uba5 enzyme and the Ufm1 conjugation pathway. J Biol Chem, 2014, 289(33): 22648-22658.
pmid: 24966333 |
[39] |
Mashahreh B, Hassouna F, Soudah N, Cohen-Kfir E, Strulovich R, Haitin Y, Wiener R. Trans-binding of UFM1 to UBA5 stimulates UBA5 homodimerization and ATP binding. FASEB J, 2018, 32(5): 2794-2802.
pmid: 29295865 |
[40] |
Fuchs S, Kikhney AG, Schubert R, Kaiser C, Liebau E, Svergun DI, Betzel C, Perbandt M. Structure and dynamics of UBA5-UFM1 complex formation showing new insights in the UBA5 activation mechanism. J Struct Biol, 2021, 213(4): 107796.
pmid: 34508858 |
[41] |
Soudah N, Padala P, Hassouna F, Kumar M, Mashahreh B, Lebedev AA, Isupov MN, Cohen-Kfir E, Wiener R. An N-terminal extension to UBA5 adenylation domain boosts UFM1 activation: Isoform-specific differences in ubiquitin- like protein activation. J Mol Biol, 2019, 431(3): 463-478.
pmid: 30412706 |
[42] |
Padala P, Oweis W, Mashahreh B, Soudah N, Cohen-Kfir E, Todd EA, Berndsen CE, Wiener R. Novel insights into the interaction of UBA5 with UFM1 via a UFM1- interacting sequence. Sci Rep, 2017, 7(1): 508.
pmid: 28360427 |
[43] |
Muona M, Ishimura R, Laari A, Ichimura Y, Linnankivi T, Keski-Filppula R, Herva R, Rantala H, Paetau A, Pöyhönen M, Obata M, Uemura T, Karhu T, Bizen N, Takebayashi H, McKee S, Parker MJ, Akawi N, McRae J, Hurles ME, DDD Study, Kuismin O, Kurki MI, Anttonen AK, Tanaka K, Palotie A, Waguri S, Lehesjoki AE, Komatsu M. Biallelic variants in uba5 link dysfunctional ufm1 ubiquitin-like modifier pathway to severe infantile- onset encephalopathy. Am J Hum Genet, 2016, 99(3): 683-694.
pmid: 27545674 |
[44] |
Liu GH, Forouhar F, Eletsky A, Atreya HS, Aramini JM, Xiao R, Huang YJ, Abashidze M, Seetharaman J, Liu JF, Rost B, Acton T, Montelione GT, Hunt JF, Szyperski T. NMR and X-RAY structures of human E2-like ubiquitin- fold modifier conjugating enzyme 1 (UFC1) reveal structural and functional conservation in the metazoan UFM1-UBA5-UFC1 ubiquination pathway. J Struct Funct Genomics, 2009, 10(2): 127-136.
pmid: 19101823 |
[45] |
Kumar M, Padala P, Fahoum J, Hassouna F, Tsaban T, Zoltsman G, Banerjee S, Cohen-Kfir E, Dessau M, Rosenzweig R, Isupov MN, Schueler-Furman O, Wiener R. Structural basis for UFM1 transfer from UBA5 to UFC1. Nat Commun, 2021, 12(1): 5708.
pmid: 34588452 |
[46] |
Wu PY, Hanlon M, Eddins M, Tsui C, Rogers RS, Jensen JP, Matunis MJ, Weissman AM, Wolberger C, Pickart CM. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J, 2003, 22(19): 5241-5250.
pmid: 14517261 |
[47] |
Cook BW, Shaw GS. Architecture of the catalytic HPN motif is conserved in all E2 conjugating enzymes. Biochem J, 2012, 445(2): 167-174.
pmid: 22563859 |
[48] |
Nahorski MS, Maddirevula S, Ishimura R, Alsahli S, Brady AF, Begemann A, Mizushima T, Guzmán-Vega FJ, Obata M, Ichimura Y, Alsaif HS, Anazi S, Ibrahim N, Abdulwahab F, Hashem M, Monies D, Abouelhoda M, Meyer BF, Alfadhel M, Eyaid W, Zweier M, Steindl K, Rauch A, Arold ST, Woods CG, Komatsu M, Alkuraya FS. Biallelic UFM1 and UFC1 mutations expand the essential role of ufmylation in brain development. Brain, 2018, 141(7): 1934-1945.
pmid: 29868776 |
[49] |
Harami GM, Gyimesi M, Kovács M. From keys to bulldozers: expanding roles for winged helix domains in nucleic-acid-binding proteins. Trends Biochem Sci, 2013, 38(7): 364-371.
pmid: 23768997 |
[50] |
Khatter H, Myasnikov AG, Natchiar SK, Klaholz BP. Structure of the human 80S ribosome. Nature, 2015, 520(7549): 640-645.
pmid: 25901680 |
[51] |
Stephani M, Picchianti L, Dagdas Y. C53 is a cross- kingdom conserved reticulophagy receptor that bridges the gap betweenselective autophagy and ribosome stalling at the endoplasmic reticulum. Autophagy, 2021, 17(2): 586-587.
pmid: 33164651 |
[52] |
Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol, 2013, 13(10): 722-737.
pmid: 24064518 |
[53] |
Liu J, Qian C, Cao XT. Post-translational modifycation control of innate immunity. Immunity, 2016, 45(1): 15-30.
pmid: 27438764 |
[54] |
Ribet D, Cossart P. Ubiquitin, SUMO, and NEDD8: key targets of bacterial pathogens. Trends Cell Biol, 2018, 28(11): 926-940.
pmid: 30107971 |
[55] |
Isaacson MK, Ploegh HL. Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Cell Host Microbe, 2009, 5(6): 559-570.
pmid: 19527883 |
[56] |
Ritchie KJ, Hahn CS, Kim KI, Yan M, Rosario D, Li L, De La Torre JC, Zhang DE. Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nat Med, 2004, 10(12): 1374-1378.
pmid: 15531891 |
[57] |
Everett RD, Meredith M, Orr A, Cross A, Kathoria M, Parkinson J. A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J, 1997, 16(7): 1519-1530.
pmid: 9130697 |
[58] |
Holowaty MN, Zeghouf M, Wu H, Tellam J, Athanasopoulos V, Greenblatt J, Frappier L. Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J Biol Chem, 2003, 278(32): 29987-29994.
pmid: 12783858 |
[59] |
Lim JH, Jono H, Koga T, Woo CH, Ishinaga H, Bourne P, Xu HD, Ha UH, Xu HD, Li JD. Tumor suppressor CYLD acts as a negative regulator for non-typeable Haemophilus influenza-induced inflammation in the middle ear and lung of mice. PLoS One, 2007, 2(10): e1032.
pmid: 17925880 |
[60] |
Lim JH, Stirling B, Derry J, Koga T, Jono H, Woo CH, Xu HD, Bourne P, Ha UH, Ishinaga H, Xu HD, Andalibi A, Feng XH, Zhu HG, Huang YX, Zhang WH, Weng XH, Yan C, Yin ZN, Briles DE, Davis RJ, Flavell RA, Li JD. Tumor suppressor CYLD regulates acute lung injury in lethal Streptococcus pneumoniae infections. Immunity, 2007, 27(2): 349-360.
pmid: 17723219 |
[61] |
Lim JH, Ha UH, Woo CH, Xu HD, Li JD. CYLD is a crucial negative regulator of innate immune response in Escherichia coli pneumonia. Cell Microbiol, 2008, 10(11): 2247-2256.
pmid: 18643924 |
[62] |
Ye ZD, Petrof EO, Boone D, Claud EC, Sun J. Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination. Am J Pathol, 2007, 171(3): 882-892.
pmid: 17690189 |
[63] |
Le Negrate G, Faustin B, Welsh K, Loeffler M, Krajewska M, Hasegawa P, Mukherjee S, Orth K, Krajewski S, Godzik A, Guiney DG, Reed JC. Salmonella secreted factor L deubiquitinase of Salmonella typhimurium inhibits NF-κB, suppresses IκBα ubiquitination and modulates innate immune responses. J Immunol, 2008, 180(7): 5045-5056.
pmid: 18354230 |
[64] |
Sweet CR, Conlon J, Golenbock DT, Goguen J, Silverman N. YopJ targets TRAF proteins to inhibit TLR-mediated NF-κB, MAPK and IRF3 signal transduction. Cell Microbiol, 2007, 9(11): 2700-2715.
pmid: 17608743 |
[65] |
Misaghi S, Balsara ZR, Catic A, Spooner E, Ploegh HL, Starnbach MN. Chlamydia trachomatis-derived deubiquitinating enzymes in mammalian cells during infection. Mol Microbiol, 2006, 61(1): 142-150.
pmid: 16824101 |
[66] |
Catic A, Misaghi S, Korbel GA, Ploegh HL. ElaD, a deubiquitinating protease expressed by E.coli. PLoS One, 2007, 2(4): e381.
pmid: 17440617 |
[67] | Zhang QA, Wang ZL, Li PB, Xie JP. USP18-mediated protein deISGylation and its role in tuberculosis and other infectious diseases. Hereditas(Beijing), 2023, 45(11): 998-1006. |
张其奥, 王子路, 李佩波, 谢建平. USP18介导的蛋白质去ISG化及其在结核病等传染病中的作用. 遗传, 2023, 45(11): 998-1006. | |
[68] |
Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D, Salem S, Radovanovic I, Grant AV, Adimi P, Mansouri N, Okada S, Bryant VL, Kong XF, Kreins A, Velez MM, Boisson B, Khalilzadeh S, Ozcelik U, Darazam IA, Schoggins JW, Rice CM, Al-Muhsen S, Behr M, Vogt G, Puel A, Bustamante J, Gros P, Huibregtse JM, Abel L, Boisson-Dupuis S, Casanova JL. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science, 2012, 337(6102): 1684-1688.
pmid: 22859821 |
[69] |
Watson RO, Bell SL, Macduff DA, Kimmey JM, Diner EJ, Olivas J, Vance RE, Stallings CL, Virgin HW, Cox J S. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe, 2015, 17(6): 811-819.
pmid: 26048136 |
[70] |
Saquib NM, Jamwal S, Midha MK, Verma HN, Manivel V. Quantitative proteomics and lipidomics analysis of endoplasmic reticulum of macrophage infected with Mycobacterium tuberculosis. Int J Proteomics, 2015, 2015(1): 270438.
pmid: 25785198 |
[71] |
Berridge MJ. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium, 2002, 32(5-6): 235-249.
pmid: 12543086 |
[72] |
Ortiz C, Cardemil L. Heat-shock responses in two leguminous plants: a comparative study. J Exp Bot, 2001, 52(361): 1711-1719.
pmid: 11479337 |
[73] |
Lim YJ, Choi JA, Choi HH, Cho SN, Kim HJ, Jo EK, Park JK, Song CH. Endoplasmic reticulum stress pathway- mediated apoptosis in macrophages contributes to the survival of Mycobacterium tuberculosis. PLoS One, 2011, 6(12): e28531.
pmid: 22194844 |
[74] |
Derrick SC, Morris SL. The ESAT6 protein of Mycobacterium tuberculosis induces apoptosis of macrophages by activating caspase expression. Cell Microbiol, 2007, 9(6): 1547-1555.
pmid: 17298391 |
[75] |
Choi JA, Lim YJ, Cho SN, Lee JH, Jeong JA, Kim EJ, Park JB, Kim SH, Park HS, Kim HJ, Song CH. Mycobacterial HBHA induces endoplasmic reticulum stress-mediated apoptosis through the generation of reactive oxygen species and cytosolic Ca2+ in murine macrophage RAW 264.7 cells. Cell Death Dis, 2013, 4(12): e957.
pmid: 24336077 |
[76] |
Cui YY, Zhao DM, Barrow PA, Zhou XM. The endoplasmic reticulum stress response: a link with tuberculosis? Tuberculosis (Edinb), 2016, 97: 52-56.
pmid: 26980496 |
[77] |
Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 1999, 397(6716): 271-274.
pmid: 9930704 |
[78] |
Gubas A, Dikic I. ER remodeling via ER-phagy. Mol Cell, 2022, 82(8): 1492-1500.
pmid: 35452617 |
[79] |
Mochida K, Nakatogawa H. ER-phagy: selective autophagy of the endoplasmic reticulum. EMBO Rep, 2022, 23(8): e55192.
pmid: 35758175 |
[80] | Zheng LY, Yao RQ, Yao YM. Update Advances in Ribosome-associated Quality Control and Ri-bophagy. Prog Biochem Biophys, 2022, 49(9): 1648-1657. |
[81] |
Braunger K, Pfeffer S, Shrimal S, Gilmore R, Berninghausen O, Mandon EC, Becker T, Förster F, Beckmann R. Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum. Science, 2018, 360(6385): 215-219.
pmid: 29519914 |
[82] |
von der Malsburg K, Shao SC, Hegde RS. The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon. Mol Biol Cell, 2015, 26(12): 2168-2180.
pmid: 25877867 |
[83] |
Kostova KK, Hickey KL, Osuna BA, Hussmann JA, Frost A, Weinberg DE, Weissman JS. CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides. Science, 2017, 357(6349): 414-417.
pmid: 28751611 |
[84] |
Thrun A, Garzia A, Kigoshi-Tansho Y, Patil PR, Umbaugh CS, Dallinger T, Liu J, Kreger S, Patrizi A, Cox GA, Tuschl T, Joazeiro CAP. Convergence of mammalian RQC and C-end rule proteolytic pathways via alanine tailing. Mol Cell, 2021, 81(10): 2112-2122.e7.
pmid: 33909987 |
[85] |
Yip MCJ, Keszei AFA, Feng Q, Chu V, Mckenna MJ, Shao SC. Mechanism for recycling tRNAs on stalled ribosomes. Nat Struct Mol Biol, 2019, 26(5): 343-349.
pmid: 31011209 |
[86] |
Zhang YH, Zhang MS, Wu JC, Lei GH, Li HL. Transcriptional regulation of the Ufm1 conjugation system in response to disturbance of the endoplasmic reticulum homeostasis and inhibition of vesicle trafficking. PLoS One, 2012, 7(11): e48587.
pmid: 23152784 |
[87] |
Colin E, Daniel J, Ziegler A, Wakim J, Scrivo A, Haack TB, Khiati S, Denommé AS, Amati-Bonneau P, Charif M, Procaccio V, Reynier P, Aleck KA, Botto LD, Herper CL, Kaiser CS, Nabbout R, N'Guyen S, Mora-Lorca JA, Assmann B, Christ S, Meitinger T, Strom TM, Prokisch H, FREX Consortium, Miranda-Vizuete A, Hoffmann GF, Lenaers G, Bomont P, Liebau E, Bonneau D. Biallelic variants in UBA5 reveal that disruption of the UFM1 cascade can result in early-onset encephalopathy. Am J Hum Genet, 2016, 99(3): 695-703.
pmid: 27545681 |
[88] |
Xu X, Huang W, Bryant CN, Dong Z, Li HL, Wu GY. The ufmylation cascade controls COPII recruitment, anterograde transport, and sorting of nascent GPCRs at ER. Sci Adv, 2024, 10(25): eadm9216.
pmid: 38905340 |
[89] | Garelis NE, Luteijn RD, Raulet DH, Cox JS. UFMylation suppresses Type I IFN signaling during M. tuberculosis infection of human macrophages. bioRxiv, 2024, doi: 10.1101/2024.08.07.607094. |
[90] |
Wang XD, Xu XZ, Wang ZF. The post-translational role of UFMylation in physiology and disease. Cells, 2023, 12(21): 2543.
pmid: 37947621 |
[91] |
Ding LJ, Jiang X, Li T, Wang SD. Role of UFMylation in tumorigenesis and cancer immunotherapy. Front Immunol, 2024, 15: 1454823.
pmid: 39247188 |
[1] | 张其奥, 王子路, 李佩波, 谢建平. USP18介导的蛋白质去ISG化及其在结核病等传染病中的作用[J]. 遗传, 2023, 45(11): 998-1006. |
[2] | 刘洋, 王邦兴, 刘志永, 韩轶, 谭耀驹, 李昕洁, 刘健雄, 谭守勇, 张天宇. 非一线抗结核药物耐药机制及耐药性诊断研究进展[J]. 遗传, 2016, 38(10): 928-939. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: