[1] Monod J. Recherches Sur la Croissance des Cultures Bac-tériennes. 2nd ed. Hermann et Cie, Paris, 1942.
[2] Magasanik B. Catabolite repression. Cold Spring Harbor Symp Quant Biol, 1961, 26: 249–256.
[3] Deutscher J. The mechanisms of carbon catabolite repres-sion in bacteria. Curr Opin Microbiol, 2008, 11(2): 87–93.
[4] Wanner BL, Kodeira R, Neidhardt FC. Regulation of lac op-eron expression: reappraisal of the theory of catabolite re-pression. J Bacteriol, 1978, 136(3): 947–954.
[5] Gorke B, Stulke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol, 2008, 6(8): 613–624.
[6] Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpy-ruvate: carbohydrate phosphotransferase systems of bacte-ria. Microbiol Rev, 1993, 57(3): 543–594.
[7] Kundig W, Ghosh S, Roseman S. Phosphate bound to his-tidine in a protein as an intermediate in a novel phos-pho-transferase system. Proc Natl Acad Sci USA, 1964, 52(4): 1067–1074.
[8] Robillard GT, Dooijewaard G, Lolkema J. Escherichia coli phosphoenolpyruvate dependent phosphotransferase sys-tem. Complete purification of Enzyme I by hydrophobic interaction chromatography. Biochemistry, 1979, 18(14): 2984–2989.
[9] Anderson B, Weigel N, Kundig W, Roseman S. Sugar transport. III. Purification and properties of a phosphor- carrier protein of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli. J Biol Chem, 1971, 246(22): 7023–7033.
[10] Saffen DW, Presper KA, Doering TL, Roseman S. Sugar transport by the bacterial phosphotransferase system. Mo-lecular cloning and structural analysis of the Escherichia coli ptsH, ptsI, and crr genes. J Biol Chem, 1987, 262: 16241–16253.
[11] Meins M, Jenö P, Müller D, Richter WJ, Rosenbusch JP, Erni B. Cysteine phosphorylation of the glucose trans-porter of Escherichia coli. J Biol Chem, 1993, 268(16): 11604–11609.
[12] Deutscher J, Francke C, Postma PW. How phosphotrans-ferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev, 2006, 70(4): 939–1031.
[13] Sondej M, Sun JZ, Seok YJ, Kaback HR, Peterkofsky A. Deduction of consensus binding sequences on proteins that bind ⅡAGlc of the phosphoenolpyruvate: sugar phos-photransferase system by cysteine scanning mutagenesis of Escherichia coli lactose permease. Proc Natl Acad Sci USA, 1999, 96(7): 3525–3530.
[14] Inada T, Kimata K, Aiba H. Mechanism responsible for glucose-lactose diauxie in Escherichia coli: challenge to the cAMP model. Genes Cell, 1996, 1(3): 293–301.
[15] Kimata K, Takahashi H, Inada T, Postma P, Aiba H. cAMP receptor protein–cAMP plays a crucial role in glu-cose–lactose diauxie by activating the major glucose transporter gene in Escherichia coli. Proc Natl Acad Sci USA, 1997, 94(24): 12914–12919.
[16] Botsford JL, Harman JG. Cyclic AMP in prokaryotes. Microbiol Rev, 1992, 56(1): 100–122.
[17] Krin E, Sismeiro O, Danchin A, Bertin PN. The regulation of Enzyme ⅡAGlc expression controls adenylate cyclase activity in Escherichia coli. Microbiology, 2002, 148: 1553–1559.
[18] Bettenbrock K, Sauter T, Jahreis K, Kremling A, Lengeler JW, Gilles ED. Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K12. J Bacteriol, 2007, 189(19): 6891–6900.
[19] Park YH, Lee BR, Seok YJ, Peterkofsky A. In vitro reconstitution of catabolite repression in Escherichia coli. J Biol Chem, 2006, 281(10): 6448–6454.
[20] Epstein W, Rothman-Denes LB, Hesse J. Adenosin |