[1] WHO. World Health Organization: Global prevalence of vitamin A deficiency. Micronutrient Deficiency Information System, MDIS Working Paper No. 2. 1995.
[2] Simon PW. Genetic improvement of vegetable carotene content. In: Bills DD, Kung SD, eds. Biotechnology and nutrition: Proc. Third Int. Symp. Butterworth-Heinemann, Boston, 1992, 291–300.
[3] Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC. Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst, 1995, 87(23): 1767–1776.
[4] Buishand JG, Gabelman WH. Investigations on the inheri-tance of color and carotenoid content in phloem and xylem of carrot roots (Daucus carota L.). Euphytica, 1979, 28(3): 611–632.
[5] Buishand JG, Gabelman WH. Studies on the inheritance of root color and carotenoid content in red × yellow and red× white crosses of carrot, Daucus carota L. Euphytica, 1980, 29(2): 241–260.
[6] Bradeen JM, Simon PW. Conversion of an AFLP fragment linked to the carrot Y2 locus to a simple, codominant, PCR-based marker form. Theor Appl Genet, 1998, 97(5–6): 960–967.
[7] Simon PW. Domestication, historical development, and mod-ern breeding of carrot. Plant Breed Rev, 2000, 19: 157–190.
[8] Santos CAF, Simon PW. QTL analyses reveal clustered loci for accumulation of major provitamin A carotenes and lycopene in carrot roots. Mol Genet Genomics, 2002, 268(1): 122–129.
[9] Just BJ, Santos CAF, Fonseca MEN, Boiteux LS, Oloizia BB, Simon PW. Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, sin-gle nucleotide polymorphism (SNP) markers and genome mapping. Theor Appl Genet, 2007, 114(4): 693–704.
[10] Santos CAF, Simon PW. Heritabilities and minimum gene number estimates of carrot carotenoids. Euphytica, 2006, 151(1): 79–86.
[11] Boiteux LS, Fonseca MEN, Simon PW. Effects of plant tissue and DNA purification methods on randomly ampli-fied polymorphic DNA-based genetic fingerprinting analysis in carrot. J Am Soc Hort Sci, 1999, 124(1): 32–38.
[12] Li G, Quiros CF. Sequence-related amplified polymor-phism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103(2–3): 455–461.
[13] 徐云碧, 朱立煌. 分子数量遗传学. 北京: 中国农业出版社, 1994, 25–26.
[14] Yang J, Zhu J. Methods for predicting superior genotypes under multiple environments based on QTL effects. Theor Appl Genet, 2005, 110(7): 1268–1274.
[15] Grzebelus D, Jagosz B, Simon PW. The DcMaster transposon display maps polymorphic insertion sites in the carrot (Daucus carota L.) genome. Gene, 2007, 390(1–2): 67–74.
[16] Santos CAF, Senalik D, Simon PW. Path analysis suggests phytoene accumulation is the key step limiting the caro-tenoid pathway in white carrot roots. Genet Mol Biol, 2005, 28(2): 287–293.
[17] 朱军. 遗传模型分析方法. 北京: 中国农业出版社, 1997.
[18] Zhang WP, Shen XY, Wu P, Hu B, Liao XY. QTLs and epistasis for seminal root length under a different water supply in rice (Oryza sativa L.). Theor Appl Genet, 2001, 103(1): 118–123.
[19] Cao GQ, Zhu J, He CX, Gao YM, Yan JQ, Wu P. Impacts of epistasis and QTL×environment interaction for devel-opmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet, 2001, 103(1): 153–160.
[20] Wang DL, Zhu J, Li ZK, Paterson AH. Mapping QTLs with epistatic effects and QTL×environment interaction by mixed linear model approaches. Theor Appl Genet, 1999, 99(7–8): 1255–1264.
[21] 曹立勇, 朱军, 任立飞, 赵松涛, 颜启传. 水稻幼苗活力相关性状的QTLs定位和上位性分析. 作物学报, 2002, 28(6): 809–815.
[22] 杨晓军, 路明, 张世煌, 周芳, 曲延英, 谢传晓. 玉米株高和穗位高的QTL定位. 遗传, 2008, 30(11): 1477&ndas |