[1] Shiu SH, Bleecker AB. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA, 2001, 98(19): 10763-10768.[2] Shiu SH, Bleecker AB. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol, 2003, 132(2): 530-543.[3] Gou XP, He K, Yang H, Yuan T, Lin HH, Clouse SD, Li J. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana. BMC Genomics, 2010, 11(1): 19.[4] Schmidt ED, Guzzo F, Toonen MA, de Vries SC. A leu-cine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development, 1997, 124(10): 2049-2062.[5] Zhao DZ, Wang GF, Speal B, Ma H. The EXCESS MICROSPOROCYTES1 gene encodes a putative leu-cine-rich repeat receptor protein kinase that controls so-matic and reproductive cell fates in the Arabidopsis anther. Genes Dev, 2002, 16(15): 2021-2031.[6] Albrecht C, Russinova E, Hecht V, Baaijens E, de Vries S. The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis. Plant Cell, 2005, 17(12): 3337-3349.[7] Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera CE, Schroeder JI. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore matu-ration. Plant Cell, 2005, 17(12): 3350-3361.[8] Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell, 1996, 8(4): 735-746.[9] Fisher K, Turner S. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol, 2007, 17(12): 1061-1066.[10] Li J, Wen JQ, Lease KA, Doke JT, Tax FE, Walker JC. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell, 2002, 110(2): 213-222.[11] Nam KH, Li JM. BRI1/BAK1, a receptor kinase pair me-diating brassinosteroid signaling. Cell, 2002, 110(2): 203-212.[12] Jinn TL, Stone JM, Walker JC. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev, 2000, 14(1): 108-117.[13] Kemmerling B, Schwedt A, Rodriguez P, Mazzotta S, Frank M, Qamar SA, Mengiste T, Betsuyaku S, Parker JE, Müssig C, Thomma BPHJ, Albrecht C, de Vries SC, Hirt H, Nürnberger T. The BRI1-associated kinase 1, BAK1, has a brassinolide independent role in plant cell-death control. Curr Biol, 2007, 17(13): 1116-1122.[14] He K, Gou XP, Yuan T, Lin HH, Asami T, Yoshida S, Russell SD, Li J. BAK1 and BKK1 regulate brassinoster-oid-dependent growth and brassinosteroid-independent cell-death pathways. Curr Biol, 2007, 17(13): 1109-1115.[15] Gómez-Gómez L, Boller T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell, 2000, 5(6): 1003-1011.[16] Shiu SH, Bleecker AB. Receptor-like kinases from Arabidopsis form a monophyletic gene family re-lated to animal receptor kinases. Proc Natl Acad Sci USA, 2001, 98(19): 10763-10768.[17] Hecht V, Vielle-Calzada JP, Hartog MV, Ed Schmidt DL, Boutilier K, Grossniklaus U, de Vries SC. The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and em-bryos and enhances embryogenic competence in culture. Plant Physiol, 2001, 127(3): 803-816.[18] Nolan KE, Irwanto RR, Rose RJ. Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol, 2003, 133(1): 218-230.[19] Nolan KE, Kurdyukov S, Rose RJ. Characterisation of the legume SERK-NIK gene superfamily including splice variants: Implications for development and defence. BMC Plant Biol, 2011, 11(3): 44.[20] Baudino S, Hansen S, Brettschneider R, Hecht VFG, Dresselhaus T, Lörz H, Dumas C, Rogowsky PM. Mo-lecular characterisation of two novel maize LRR recep-tor-like kinases, which belong to the SERK gene family. Planta, 2001, 213(1): 1-10.[21] Ito Y, Takaya K, Kurata N. Expression of SERK family receptor-like protein kinase gene in rice. Biochem Biophys Acta, 2005, 1730(3): 253-258.[22] Hu H, Xiong L, Yang Y. Rice SERK1 gene posi-tively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta, 2005, 222(1): 107-117.[23] Thomas C, Meyer D, Himber C, Steinmetz A. Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol Biochem, 2004, 42(1): 35-42.[24] Singla B, Tyagi AK, Khurana JP, Khurana P. Analysis of expression profile of selected genes expressed during auxin-induced somatic embryogenesis in leaf base system of wheat (Triticum aestivum) and their possible interactions. Plant Mol Biol, 2007, 65(5): 677-692.[25] Schellenbaum P, Jacques A, Maillot P, Bertsch C, Mazet F, Farine S, Walter B. Characterization of VvSERK1, VvSERK2, VvSERK3 and VvL1L genes and their expression during somatic embryogenesis of grape-vine (Vitis vinifera L.). Plant Cell Rep, 2008, 27(12): 1799-1809.[26] Zakizadeh H, Stummann BM, Lütken H, Müller R. Isola-tion and characterization of four somatic embryogenesis receptor-like kinase (RhSERK) genes from minia-ture potted rose (Rosa hybrida cv. Linda). Plant Cell Tiss Organ Cult, 2010, 101(3): 331-338.[27] Shimada T, Hirabayashi T, Endo T, Fujii H, Kita M, Omura M. Isolation and characterization of the somatic embryogenesis receptor-like kinase gene homologue (CitSERK1) from Citrus unshiu Marc. Sci Hortic, 2005, 103(2): 233-238.[28] 尤翠荣. 仙客来体细胞胚胎发生、发育及SERK基因在体细胞胚性转化过程的表达特性[学位论文]. 青岛: 中国海洋大学, 2009.[29] 高燕, 席梦利, 王桂凤, 杨立伟, 施季森. 马尾松体细胞胚胎发生相关基因PmSERK1的克隆与表达分析. 分子植物育种, 2010, 8(1): 53-58.[30] Santos MO, Romano E, Vieira LS, Baldoni AB, Aragao FJL. Suppression of SERK gene expression affects fungus tolerance and somatic embryogenesis in transgenic lettuce. Plant Biol, 2009, 11(1): 83-89.[31] de Oliveira Santos M, Romano E, Yotoko KSC, Tinoco MLP, Dias BBA, Aragão FJL. Characterisation of the ca-cao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Sci, 2005, 168(3): 723-729.[32] 强风风. 金花茶体胚调控及SERK基因的克隆与定量表达分析[学位论文]. 福州: 福建农林大学, 2010.[33] Pérez-Núñez MT, Souza R, Sáenz L, Chan JL, Zúñiga-Aguilar JJ, Oropeza C. Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep, 2009, 28(1): 11-19.[34] 蔡英卿. 龙眼体胚发生过程中SERK等胚性相关基因的克隆与表达分析[学位论文]. 福州:福建农林大学, 2011.[35] Albertini E, Marconi G, Reale L, Barcaccia G, Porceddu A, Ferranti F, Falcinelli M. SERK and APOSTART: Candidate genes for apomixis in Poa pratensis. Plant Physiol, 2005, 138(4): 2185-2199.[36] Jia GX, Liu XD, Owen HA, Zhao DZ. Signaling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase. Proc Natl Acad Sci USA, 2008, 105(6): 2220-2225.[37] DeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark SE. The LAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for mer-istem function in Arabidopsis. Plant J, 2006, 45(1): 1-16.[38] Hord CL, Chen CB, Deyoung BJ, Clark SE, Ma H. The BAM1/BAM2 receptor-like kinases are important regula-tors of Arabidopsis early anther development. Plant Cell, 2006, 18(7): 1667-1680.[39] Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci USA, 1999, 96(20): 11664-11669.[40] Yang WC, Ye D, Xu J, Sundaresan V. The SPORO- CYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev, 1999, 13(16): 2108-2117.[41] Zhao DZ. Control of anther cell differentiation: a team-work of receptor-like kinases. Sex Plant Reprod, 2009, 22(4): 221-228.[42] Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann KA, Tax FE. Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol, 1999, 121(3): 743-752.[43] Li JM, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 1997, 90(5): 929-938.[44] Karlova R, Boeren S, Russinova E, Aker J, Vervoort J, de Vries SC. The Arabidopsis somatic embryogenesis receptor-like kinase 1 protein complex includes Brassinosteroid-insensitive 1. Plant Cell, 2006, 18(3): 626-638.[45] Aker J, Hesselink R, Engel R, Karlova R, Borst JW, Visser AJWG, de Vries SC. In vivo hexamerization and characterization of the Arabidopsis AAA ATPase CDC48A complex using forster resonance energy trans-fer-fluorescence lifetime imaging microscopy and fluo-rescence correlation spectroscopy. Plant Physiol, 2007, 145(2): 339-350.[46] Wang XF, Kota U, He K, Blackburn K, Li J, Goshe MB, Huber SC, Clouse SD. Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev Cell, 2008, 15(2): 220-235.[47] Russinova E, Borst JW, Kwaaitaal M, Caño-Delgado A, Yin YH, Chory J, de Vries SC. Heterodimerzation and endocytosis of Arabidopsis brassinosteroid recep-tors BRI1 and AtSERK3 (BAK1). Plant Cell, 2004, 16(12): 3216-3229.[48] Kinoshita T, Caño-Delgado A, Seto H, Hiranuma S, Fuji-oka S, Yoshida S, Chory J. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature, 2005, 433(7022): 167-171.[49] Vert G, Nemhauser JL, Geldner N, Hong FX, Chory J. Molecular mechanisms of steroid hormone signaling in plants. Annu Rev Cell Dev Biol, 2005, 21(1): 177-201.[50] Wang ZY, Wang QM, Chong K, Wang FR, Wang L, Bai MY, Jia CG. The brassinosteroid signal transduction pathway. Cell Res, 2006, 16(5): 427-434.[51] Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol, 2009, 60(1): 379-406.[52] Kemmerling B, Schwedt A, Rodriguez P, Mazzotta S, Frank M, Qamar SA, Mengiste T, Betsuyaku S, Parker JE, Müssig C, Thomma BP, Albrecht C, de Vries SC, Hirt H, Nürnberger T. The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Curr Biol, 2007, 17(13): 1116-1122.[53] Schulze B, Mentzel T, Jehle A K, Mueller K, Beeler S, Boller T, Felix G, Chinchilla D. Rapid heteromerization and phosphorylation of ligand-activated plant transmem-brane receptors and their associated kinase BAK1. J Biol Chem, 2010, 285(13): 9444-9451.[54] Wang XF, Goshe MB, Soderblom EJ, Phinney BS, Kuchar JA, Li J, Asami T, Yoshida S, Huber SC, Clouse SD. Identification and functional analysis of in vivo phos-phorylation sites of the Arabidopsis BRASSINOSTEROID- INSENSITIVE1 receptor kinase. Plant Cell, 2005, 17(6): 1685-1703.[55] Shan LB, He P, Li JM, Heese A, Peck SC, Nürnberger T, Martin GB, Sheen J. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP re-ceptor-signaling complexes and impede plant immunity. Cell Host Microbe, 2008, 4(1): 17-27. |