[1] Reue K. The lipin family: mutations and metabolism. Curr Opin Lipidol, 2009, 20(3): 165-170.[2] Oberer M, Boeszoermenyi A, Nagy HM, Zechner R. Recent insights into the structure and function of comparative gene identification-58. Curr Opin Lipidol, 2011, 22(3): 149-158.[3] Cornaciu I, Boeszoermenyi A, lindermuth H, Nagy HM, Cerk IK, Ebner C, Salzburger B, Gruber A, Schweiger M, Zechner R, Lass A, Zimmermann R, Oberer M. The minimal domain of adipose triglyceride lipase (ATGL) ranges until leucine 254 and can be activated and inhibited by CGI-58 and G0S2, respectively. PLoS One, 2011, 6(10): e26349.[4] Lefèvre C, Jobard F, Caux F, Bouadjar B, Karaduman A, Heilig R, Lakhdar H, Wollenberg A, Verret JL, Weissen-bach J, Özgüc M, Lathrop M, Prud'home JF, Fischer J. Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome. Am J Hum Genet, 2001, 69(5): 1002-1012.[5] Lass A, Zimmermann R, Haemmerle G, Riederer M, Schoiswohl G, Schweiger M, Kienesberger P, Strauss J G, Gorkiewicz G, Zechner R. Adipose triglyceride li-pase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman syndrome. Cell Metab, 2006, 3(5): 309-319.[6] Serr J, Suh Y, Lee K. Cloning of comparative gene identification-58 gene in avian species and investigation of its developmental and nutritional regulation in chicken adi-pose tissue. J Anim Sci, 2011, 89(11): 3490-500.[7] Lu X, Yang XY, Liu J. Differential control of ATGL-mediated lipid droplet degradation by CGI-58 and G0S2. Cell Cycle, 2010, 9(14): 2719-2725.[8] Gruber A, Cornaciu I, Lass A, Schweiger M, Poeschl M, Eder C, Kumari M, Schoiswohl G, Wolinski H, Kohlwein SD, Zechner R, Zimmermann R, Oberer M. The N-terminal region of comparative gene identification-58 (CGI-58) is important for lipid droplet binding and activation of adipose triglyceride lipase. J Biol Chem, 2010, 285(16): 12289-12298.[9] Watt MJ, Spriet LL. Triacylglycerol lipases and metabolic control: implications for health and disease. Am J Physiol Endocrinol Metab, 2010, 299(2): E162-E168.[10] Yang XY, Lu X, Lombes M, Rha GB, Chi YI, Guerin TM, Smaert EJ, Liu J. The G0/G1 switch gene 2 regulates adipose lipolysis through association with adipose triglyc-eride lipase. Cell Metab, 2010, 11(3): 194-205.[11] Montero-Moran G, Caviglia JM, McMahon D, Rothenberq A, Subramanian V, Xu Z, Lara-Gonzalez S, Storch J, Carnan GM, Brasaemle DL. CGI-58/ABHD5 is a coenzyme A-dependent lysophosphatidic acid acyltransferase. J Lipid Res, 2010, 51(4): 709-719.[12] Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A. Adipose triglyceride lipase and the lipolytic ca-tabolism of cellular fat stores. J Lipid Res, 2009, 50(1): 3-21.[13] Granneman JG, Moore HP, Krishnamoorthy R, Rathod M. Perilipin controls lipolysis by regulating the interactions of ab-hydrolase containing 5 (Abhd5) and adipose triglyc-eride lipase (Atgl). J Biol Chem, 2009, 284(50): 34538-34544.[14] Zimmermann R, Lass A, Haemmerle G, Zechner R. Fate of fat: the role of adipose triglyceride lipase in lipolysis. Biochim Biophys Acta, 2009, 1791(6): 494-500.[15] Bickel PE, Tansey JT, Welte MA. Pat proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta, 2009, 1791(6): 419-440.[16] Brasaemle DL. Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res, 2007, 48(12): 2547-2559. |