[1] 孟德尔, 格雷戈. 植物杂交的试验. 梁宏, 王斌译. 见: 遗传学经典论文集. 北京: 科学出版社, 1984: 5-20.[2] Baterson W. Experiments in plant hybridization by Gregor Mendel. J R Hortic Soc, 1901, 24(1): 1-32.[3] 刘祖洞, 江绍慧. 遗传学 (第二版). 北京: 高等教育出版社, 1990: 1-4.[4] 戴灼华, 王亚馥, 粟翼玟. 遗传学(第二版). 北京: 高等教育出版社, 2008: 1-12.[5] 周荣家. 遗传学-理解生命系统——第20届国际遗传学大会在德国柏林召开. 遗传, 2008, 30(9): 1237-1238.[6] Reid JB, Ross JJ. Mendel’s genes: toward a full molecular characterization. Genetics, 2011, 189(1): 3-10.[7] Bhattacharyya MK, Smith AM, Ellis THN, Hedley C, Martin C. The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell, 1990, 60(1): 115-122.[8] Hellens RP, Moreau C, Wang KL, Schwinn EK, Thomson JS, Fiers MWEJ, Frew TJ, Murray RS, Hofer JMI, Jacobs JM, Davies KM, Allan AC, Bendahmane A, Coyne CJ, Vaughan MG, Ellis THN. Identification of Mendel’s white flower character. PLoS One, 2010, 5(10): e13230, 1-8.[9] Ellis THN, Hofer JM, Vaughan GM, Coyne JC, Hellens RP. Mendel, 150 years on. Trends Plant Sci, 2011, 16(11): 1360-1385.[10] Gregory RP. The seed characters of Pisum sativum. New Phytol, 1903, 2(10): 226-228.[11] Greenwood CT, Thomson J. Studies on the biosynthesis of starch granules. II. The properties of the components of starches from smooth- and wrinkled-seeded peas during growth. Biochem J, 1962, 82(1): 156-164.[12] Matters GL, Boyer CD. Soluble starch synthases and starch branching enzymes from cotyledons of smooth- and wrinkled-seeded lines of Pisum sativum L. Biochem Genet, 1982, 20(9-10): 833-848.[13] Hedley CL, Smith CM, Ambrose MJ, Cook S, Wang TL. An analysis of seed development in Pisum sativum. II. The effect of the r-locus on the growth and development of the seed. Ann Bot, 1986, 58(3): 371-379.[14] Edwards J, Green JH, Rees TA. Activity of branching en-zyme as a cardinal feature of the Ra locus in Pisum sati-vum. Phytochemistry, 1988, 27(6): 1615-1620.[15] Smith AM. Major differences in isoforms of starch-branching enzyme between developing embryos of round- and wrinkled-seeded peas (Pisum sativum L.). Planta, 1988, 175(2): 270-279.[16] White OE. Studies of inheritance in Pisum. II. The present state of knowledge of heredity and variation in peas. Proc Am Philos Soc, 1917, 56(7): 487-588.[17] Brian PW, Hemming HG. The effect of gibberellic acid on shoot growth of pea seedlings. Physiol Plant, 1955, 8(3): 669-681.[18] Ingram TJ, Reid JB. Internode length in Pisum. Gene na may block gibberellin synthesis between ent-7α-hydroxykaurenoic acid and gibberellin A12-aldehyde. Plant Physiol, 1987, 83(4): 1048-1053.[19] Ross JJ, Reid JB, Gaskin P, MacMillan J. Internode length in Pisum. Estimation of GA1 levels in genotypes Le, le and led. Physiol Plant, 1989, 76(2): 173-176.[20] Proebsting WM, Hedden P, Lewis MJ, Croker SJ, Proebsting LN. Gibberellin concentration and transport in genetic lines of pea: effects of grafting. Plant Physiol, 1992, 100 (3): 1354-1360.[21] Lester DR, Ross JJ, Davies PJ, Reid JB. Mendel’s stem length gene (Le) encodes gibberellin 3 beta-Hydroxylase. Plant Cell, 1997, 9(8): 1435-1443.[22] Martin DN, Proebsting WM, Hedden P. Mendel’s dwarfing gene: cDNAs from the Le alleles and function of the expressed proteins. Proc Natl Acad Sci USA, 1997, 94(16): 8907-8911.[23] Lester DR, Mackenzie-Hose AK, Davies PJ, Ross JJ, Reid JB. The influence of the null le-2 mutation on gibberellin levels in developing pea seeds. Plant Growth Regul, 1999, 27(2): 83-89.[24] Armstead I, Donnison I, Aubry S, Harper J. Hörtensteiner S. James C, Mani J, Moffet M, Ougham H, Roberts L, Thomas A, Weeden N, Thomas H, King I. Cross-species identification of Mendel’s I locus. Science, 2007, 315(5808): 73.[25] Sato Y, Morita R, Nishimura M, Yamaguchi H, Kusaba M. Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc Natl Acad Sci USA, 2007, 104(35): 14169-14174.[26] Aubry S, Mani J, Hortensteiner S. Stay-green protein, de-fective in Mendel’s green cotyledon mutant, acts inde-pendent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway. Plant Mol Biol, 2008, 67(3): 243-256.[27] Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are re-quired for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J, 2009, 57(1): 120-131.[28] Statham CM, Crowden RK, Harborne JB. Biochemical genetics of pigmentation in Pisum sativum. Phytochemis-try, 1972, 11(3): 1083-1088.[29] Yoshida K, Mori M, Kondo T. Blue flower color devel-opment by anthocyanins: from chemical structure to cell physiology. Nat Prod Rep, 2009, 26(7): 884-915.[30] Harker CL, Ellis THN, Coen ES. Identification and ge-netic regulation of the chalcone synthease multigene fam-ily in pea. Plant Cell, 1990, 2(3): 185-194.[31] Kalo P, Seres A, Taylor SA, Jakab J, Kevei Z, Kereszt A, Endre G, Ellis THN, Kiss GB. Comparative mapping be-tween Medicago sativa and Pisum sativum. Mol Genet and Genomics, 2004, 272(3): 235-246.[32] Price DN, Smith CM, Hedley CL. The effect of the gp gene on fruit development in Pisum sativum L. I. Structural and physical aspects. New Phytol, 1988, 110(2): 261-269.[33] Price DN, Hedley CL. The effect of the gp gene on fruit development in Pisum sativum L. II. Photosynthetic im-plications. New Phytol, 1988, 110(2): 271-277.[34] Waters MT, Moylan EC, Langdale JA. GLK transcription factors regulate chloroplast development in a cell autonomous manner. Plant J, 2008. 56(3): 432-444.[35] Barth C, Conklin PL. The lower cell density of leaf pa-renchyma in the Arabidopsis thaliana mutant lcd1-1 is associated with increased sensitivity to ozone and virulent Pseudomonas syringae. Plant J, 2003, 35(2): 206-218.[36] Weller JL. Hecht V, Liew LC, Sussmilch CF, Wenden B, Knowles LC, Schoor JKV. Update on the genetic control of flowering in garden pea. J Exp Bot, 2009, 60(9): 2493-2499.[37] Clark SE, Running MP, Meyerowitz EM. CLAVATA3 is a specific regulator of shoot and floral meristem develop-ment affecting same processes as CLAVATA1. Develop-ment, 1995, 121(7): 2057-2067.[38] Clark SE, Williams RW, Meyerowitz EM. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 1997, 89(4): 575-585.[39] Rasmusson J. Genetically changed linkage values in Pisum. Hereditas, 1927, 10(1-2): 1-150.[40] Blixt S. Why didn’t Gregor Mendel find linkage? Nature, 1975, 256(5514): 206.[41] Zhong RQ, Lee CH, Zhou JL, McCarthy RL, Ye ZH. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell, 2008, 20(10): 2763-2782.[42] 皮妍, 林娟, 侯嵘, 沈大棱, 蒋科技, 乔守怡. 国内高校遗传学教材发展研究. 遗传, 2009, 31(1): 109-112.[43] 何风华, 黎杰强, 朱碧岩, 高峰. 遗传学实验课中对学生学业评价的改革与实践. 见: 张飞雄, 李绍武主编. 高等院校遗传学教学改革探索. 北京: 化学工业出版社, 2010: 252-255.[44] 李雅轩, 赵昕, 张飞雄, 胡英考, 晏月明, 蔡民华, 李小辉. 案例在遗传与优生教学中的应用. 遗传, 2012, 34(5): 647-650.[45] 何风华. 水稻QTL分析的研究进展. 西北植物学报, 2004, 24(11): 2163-2169.[46] Wang SK, Wu K, Yuan QB, Liu XY, Liu ZB, Lin XY, Zeng RZ, Zhu HT, Dong GJ, Qian Q, Zhang GQ, Fu XD. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012, 44(8): 950-954.[47] 高冀之. 迷人的基因——遗传学往事的文化启迪. 上海: 上海教育出版社, 2007: 19-25. |