[1] Lippert TH, Ruoff HJ, Volm M. Intrinsic and acquired drug resistance in malignant tumors. The main reason for therapeutic failure. Arzneimittelforschung, 2008, 58(6): 261–264. <\p>
[2] O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. C-Myc-regulated microRNAs modulate E2F1 expres-sion. Nature, 2005, 435(7043): 839–843. <\p>
[3] Blower PE, Chung JH, Verducci JS, Lin S, Park JK, Dai Z, Liu CG, Schmittgen TD, Reinhold WC, Croce CM, Weinstein JN, Sadee W. MiRNAs modulate the chemosen-sitivity of tumor cells. Mol Cancer Ther, 2008, 7(1): 1–9. <\p>
[4] Zheng T, Wang J, Chen X, Liu L. Role of microRNA in anti-cancer drug resistance. Int J Cancer, 2010, 126(1): 2–10. <\p>
[5] Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol, 2009, 27(34): 5848–5856. <\p>
[6] Kozomara A, Griffiths-Jones S. miRBase: integrating mi-croRNA annotation and deep-sequencing data. Nucleic Acids Res, 2011, 39: 152–157. <\p>
[7] Lewis B P, Burge C B, Bartel V. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets. Cell, 2005, 120(1): 15–20. <\p>
[8] Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA. org resource: targets and expression. Nucleic Acids Res, 2008, 36: 149–153. <\p>
[9] Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM, Chien CH, Wu MC, Huang CY, Tsou AP, Huang HD. miRTarBase: a database curates experimentally validated microRNA-target inter-actions. Nucleic Acids Research, 2011, 39: 163–169. <\p>
[10] Fojo T. Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoterregions, epigenetic changes and microRNAs. Drug Resist Updat, 2007, 10(1–2): 59–67. <\p>
[11] Sun YM, Lin KY, Chen YQ. Diverse functions of miR-125 family in differentcell contexts. J Hematol Oncol, 2013, 6: 6. <\p>
[12] Xia HF, He TZ, Liu CM, Cui Y, Song PP, Jin XH, Ma X. MiR-125b expression affects the proliferation and apop-tosis of human glioma cells by targeting Bmf. Cell Physiol Biochem, 2009, 23(4–6): 347–358. <\p>
[13] Mizuno Y, Yagi K, Tokuzawa Y, Kanesaki-Yatsuka Y, Suda T, Katagiri T, Fukuda T, Maruyama M, Okuda A, Amemiya T, Kondoh Y, Tashiro H, Okazaki Y. miR- 125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem Biophys Res Commun, 2008, 368(2): 267–272. <\p>
[14] 胡斌, 吴爱国, 李学孝, 纪术峰, 王梦川, 吴凯, 邵国利. miR-125b-1 增强乳腺癌SKBR-3 细胞对紫杉醇的药物敏感性. 热带医学杂志, 2012, 12(7): 789–792. <\p>
[15] 智慧, 朱伟, 王同杉, 王建, 束永前, 刘平. miR-125b靶向抑制BCL2、MCL1表达对胃癌SGC7901/VCR细胞多药耐药性的影响. 南京医科大学学报, 2011, 6: 777–781. <\p>
[16] Kong F, Sun C, Wang Z, Han L, Weng D, Lu Y, Chen G. miR-125b confers resistance of ovarian cancer cells to cisplatin by targeting pro-apoptotic Bcl-2 antagonist killer 1(BAK1)expression. J Huazhong Univ Sci Technolog Med Sci, 2011, 31(4): 543–549. <\p>
[17] Shi L, Zhang J, Pan T, Zhou J, Gong W, Liu N, Fu Z, You Y. MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Res, 2010, 1312: 120–126. <\p>
[18] Duman BB, Sahin B, Acikalin A, Ergin M, Zorludemir S. PTEN, Akt, MAPK, p53 and p95 expression to predict trastuzumab resistance in HER2 positive breast cancer. J BUON, 2013, 18(1): 44–50. <\p>
[19] Pritchard AL, Hayward NK. Molecular pathways: mito-gen-activated protein kinase pathway mutations and drug resistance. Clin Cancer Res, 2013, 19(9): 2301– 2309. <\p>
[20] Paunovic V, Harnett MM. Mitogen-activated protein kinases as therapeutic targets for rheumatoid arthritis. Drugs, 2013, 73(2): 101–115. <\p>
[21] 邢风娟, 王岩, 孟令杰. 肿瘤多药耐药机制及其相关信号通路的研究进展. 中国实验诊断学, 2013, 17(2): 379–382. <\p>
[22] 周秀怀. 抑制Wnt /β-catenin 信号通路增加食管癌顺铂化疗敏感性的研究. 细胞与分子免疫学杂志, 2011, 27(12): 1354–1355. <\p>
[23] Yang Y, Mallampati S, Sun B, Zhang J, Kim SB, Lee JS, Gong Y, Cai Z, Sun X. Wnt pathway contributes to the protection by bone marrow stromal cells of acute lym-phoblastic leukemia cells and is a potential therapeutic target. Cancer Lett, 2013, 333(1): 9–17. <\p>
[24] Deng Y, Su Q, Mo J, Fu X, Zhang Y, Lin EH. Celecoxib downregulates CD133 expression through inhibition of the Wnt signaling pathway in colon cancer cells. Cancer In-vest, 2013, 31(2): 97–102. <\p>
[25] Harati R, Benech H, Villégier AS, Mabondzo A. P-glycoprotein, breast cancer resistance protein, Organic Anion Transporter 3, and Transporting Peptide 1a4 during blood-brain barrier maturation: involvement of Wnt/β-catenin and endothelin-1 signaling. Mol Pharm, 2013, 10(5): 1566–1580. <\p>
[26] Xu N, Shen C, Luo Y, Xia L, Xue F, Xia Q, Zhang J. Upregulated miR-130a increases drug resistance by regu-lating RUNX3 and Wnt signaling in cisplatin- treated HCC cell. Biochem Biophys Res Commun, 2012, 425(2): 468–472. <\p>
[27] Höpker K, Reinhardt HC. p53-regulating pathways as tar-gets for personalized cancer therapy. Dtsch Med Wochenschr, 2013, 138(3): 82–86. <\p>
[28] Gottschalk B, Klein A. Restoration of wild-type p53 in drug-resistant mouse breast cancer cells leads to differen-tial gene expression, but is not sufficient to overcome the malignant phenotype. Mol Cell Biochem, 2013, 379(1–2): 213–227. <\p>
[29] Atsumi Y, Inase A, Osawa T, Sugihara E, Sakasai R, Fu-jimori H, Teraoka H, Saya H, Kanno M, Tashiro F, Naka-gama H, Masutani M, Yoshioka K. The Arf/p53 protein module, which induces apoptosis, down-regulates histone H2AX to allow normal cells to survive in the presence of anti-cancer drugs. J Biol Chem, 2013, 288(19): 13269–13277. <\p>
[30] Kapoor NR, Ahuja R, Shukla SK, Kumar V. The HBx protein of hepatitis B virus confers resistance against nu-cleolar stress and anti-cancer drug-induced p53 expression. FEBS Lett, 2013, 587(9): 1287–1292. <\p>
[31] Schoof CR, Botelho EL, Izzotti A, Vasques Ldos R. Mi-croRNAs in cancer treatment and prognosis. Am J Cancer Res, 2012, 2(4): 414–433. <\p>
[32] Zhang J, Wang Y, Zhen P, Luo X, Zhang C, Zhou L, Lu Y, Yang Y, Zhang W, Wan J. Genome-wide analysis of miRNA signature differentially expressed in doxorubi-cin-resistant and parental human hepatocellular carcinoma cell lines. PLoS ONE, 2013, 8(1): e54111. <\p>
[33] Haenisch S, Cascorbi I. miRNAs as mediators of drug re-sistance. Epigenomics, 2012, 4(4): 369–381. <\p>
[34] Maftouh M, Avan A, Galvani E, Peters GJ, Giovannetti E. Molecular mechanisms underlying the role of microRNAs in resistance to epidermal growth factor receptor-targeted agents and novel therapeutic strategies for treatment of non-small- cell lung cancer. Crit Rev Oncog, 2013, 18(4): 317–326. <\p>
[35] Allen KE, Weiss GJ. Resistance may not be futile: mi-croRNA biomarkers for chemoresistance and potential therapeutics. Mol Cancer Ther, 2010, 9(12): 3126–3136.<\p> |