[1] Guadamillas MC, Cerezo A, Del Pozo MA. Overcoming anoikis - pathways to anchorage-independent growth in cancer. J Cell Sci, 2011, 124(Pt 19): 3189-3197.[2] Taddei ML, Giannoni E, Fiaschi T, Chiarugi P. Anoikis: an emerging hallmark in health and diseases. J Pathol, 2012, 226(2): 380-393.[3] Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer, 2009, 9(4): 274-284.[4] Chiarugi P, Giannoni E. Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol, 2008, 76(11): 1352-1364.[5] Vachon PH. Integrin signaling, cell survival, and anoikis: distinctions, differences, and differentiation. J Signal Transduct, 2011, 2011(2011): 173-191.[6] Luo ML, Shen XM, Zhang Y, Wei F, Xu X, Cai Y, Zhang X, Sun YT, Zhan QM, Wu M, Wang MR. Amplification and overexpression of CTTN (EMS1) contribute to the metastasis of esophageal squamous cell carcinoma by promoting cell migration and anoikis resistance. Cancer Res, 2006, 66(24): 11690-11699.[7] Wang XC, Wu YP, Ye B, Lin DC, Feng YB, Zhang ZQ, Xu X, Han YL, Cai Y, Dong JT, Zhan QM, Wu M, Wang MR. Suppression of anoikis by SKP2 amplification and overexpression promotes metastasis of esophageal squamous cell carcinoma. Mol Cancer Res, 2009, 7(1): 12-22.[8] Du XL, Yang H, Liu SG, Luo ML, Hao JJ, Zhang Y, Lin DC, Xu X, Cai Y, Zhan QM, Wang MR. Calreticulin promotes cell motility and enhances resistance to anoikis through STAT3-CTTN-Akt pathway in esophageal squamous cell carcinoma. Oncogene, 2009, 28(42): 3714-3722.[9] Shen XM, Wu YP, Feng YB, Luo ML, Du XL, Zhang Y, Cai Y, Xu X, Han YL, Zhang X, Zhan QM, Wang MR. Interaction of MT1-MMP and laminin-5γ2 chain correlates with metastasis and invasiveness in human esophageal squamous cell carcinoma. Clin Exp Metastasis, 2007, 24(7): 541-550.[10] Choi YL, Kaneda R, Wada T, Fujiwara SI, Soda M, Watanabe H, Kurashina K, Hatanaka H, Enomoto M, Takada S, Yamashita Y, Mano H. Identification of a constitutively active mutant of JAK3 by retroviral expression screening. Leuk Res, 2007, 31(2): 203-209.[11] Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara SI, Watanabe H, Kurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburatani H, Niki T, Sohara Y, Sugiyama Y, Mano H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 2007, 448(7153): 561-566.[12] Martelli ML, Isella C, Mira A, Fu LM, Cantarella D, Medico E. Exploiting orthologue diversity for systematic detection of gain-of-function phenotypes. BMC Genomics, 2008, 9(1): 254.[13] Harbers K, Müller U, Grams A, Li E, Jaenisch R, Franz T. Provirus integration into a gene encoding a ubiquitin-conjugating enzyme results in a placental defect and embryonic lethality. Proc Natl Acad Sci USA, 1996, 93(22): 12412-12417.[14] Whitcomb EA, Taylor A. Ubiquitin control of S phase: a new role for the ubiquitin conjugating enzyme, UbcH7. Cell Div, 2009, 4: 17.[15] Whitcomb EA, Dudek EJ, Liu Q, Taylor A. Novel control of S phase of the cell cycle by ubiquitin-conjugating enzyme H7. Mol Biol Cell, 2009, 20(1): 1-9.[16] Wenzel DM, Lissounov A, Brzovic PS, Klevit RE. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature, 2011, 474(7349): 105-108.[17] Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell, 1993, 75(3): 495-505.[18] Verma S, Ismail A, Gao XH, Fu GL, Li XT, O'Malley BW, Nawaz Z. The ubiquitin-conjugating enzyme UBCH7 acts as a coactivator for steroid hormone receptors. Mol Cell Biol, 2004, 24(19): 8716-8726.[19] 韩亚玲, 冯彦斌, 罗曼莉, 徐昕, 蔡岩, 王明荣. 人 |