遗传 ›› 2022, Vol. 44 ›› Issue (10): 937-949.doi: 10.16288/j.yczz.22-196
王姗姗1(), 赵琬怡2, 吴慧潇2, 舒梦2, 袁嘉欣2, 方丽2, 徐潮1()
收稿日期:
2022-06-15
修回日期:
2022-09-17
出版日期:
2022-10-20
发布日期:
2022-09-29
通讯作者:
徐潮
E-mail:593603071@qq.com;doctorxuchao@163.com
作者简介:
王姗姗,在读硕士研究生,专业方向:内分泌与代谢遗传学。E-mail: 基金资助:
Shanshan Wang1(), Wanyi Zhao2, Huixiao Wu2, Meng Shu2, Jiaxin Yuan2, Li Fang2, Chao Xu1()
Received:
2022-06-15
Revised:
2022-09-17
Online:
2022-10-20
Published:
2022-09-29
Contact:
Xu Chao
E-mail:593603071@qq.com;doctorxuchao@163.com
Supported by:
摘要:
特发性低促性腺激素性性腺功能减退症(idiopathic hypogonadotropic hypogonadism, IHH)是由于促性腺激素释放激素(gonadotropin-releasing hormone, GnRH)缺乏或作用缺陷引起以性腺发育不良为特征的内分泌罕见病。依据是否并发嗅觉障碍可以分为嗅觉正常特发性低促性腺激素性性腺功能减退症(normosmic isolated hypogonadotropic hypogonadism, nIHH)和嗅觉障碍的卡尔曼综合征(Kallmann syndrome, KS)。本研究收集并分析了1例nIHH散发病例的临床资料。全外显子测序证实患儿同时携带FGFR1基因变异(c.2008G>A, p.E670K)和遗传于其母亲的CEP290基因变异(c.964G>A, p.D322N)。生物信息学分析发现FGFR1基因突变(c.2008G>A)改变FGFR1蛋白TK2结构域,影响FGFR1受体的功能及下游细胞信号转导通路的激活。CEP290基因(c.964G>A)可能影响GnRH神经元的正确迁徙途径导致IHH,CEP290蛋白与FGFR1蛋白之间存在相互作用。本研究结果扩展了IHH致病基因表达谱,为探究IHH的致病机制提供了新的方向,并为该类疾病的临床精准诊疗提供了借鉴和参考。
王姗姗, 赵琬怡, 吴慧潇, 舒梦, 袁嘉欣, 方丽, 徐潮. 特发性低促性腺激素性性腺功能减退症FGFR1与CEP290基因变异研究[J]. 遗传, 2022, 44(10): 937-949.
Shanshan Wang, Wanyi Zhao, Huixiao Wu, Meng Shu, Jiaxin Yuan, Li Fang, Chao Xu. Research on the variants of FGFR1 and CEP290 genes in idiopathic hypogonadotropin hypogonadism[J]. Hereditas(Beijing), 2022, 44(10): 937-949.
表1
nIHH先证者患者的临床特点及曲普瑞林兴奋试验"
参数 | 结果 |
---|---|
发病年龄 | 9月龄 |
临床症状 | |
生殖系统发育异常 | + |
嗅觉异常 | - |
听力丧失 | - |
骨骼发育不良 | - |
牙齿发育不良 | - |
腭裂 | - |
斜视 | + |
睾丸体积 | 0.8 cm×0.5 cm×0.7 cm(左侧) 0.7 cm×0.5 cm×0.6 cm(右侧) |
实验室检查 | |
基线FSH (mIU/mL) | 0.96(1.27~19.26) |
基线LH (mIU/mL) | 0.39(1.24~8.62) |
基线睾酮 (ng/mL) | 0.01(<8.8) |
基线PRL (ng/mL) | 12.67(2.64~13.13) |
曲普瑞林兴奋试验 | |
FSH (30 min) (mIU/mL) | 10.56 |
FSH (60 min) (mIU/mL) | 11.22 |
LH (30 min) (mIU/mL) | 2.12 |
LH (60 min) (mIU/mL) | 2.02 |
脑垂体MRI检查 | 垂体MR平扫未见明显异常。 |
生殖系统超声检查 | 双侧隐睾、双侧腹股沟区探及睾丸回声;双侧睾丸偏小 |
[1] |
Erbaş İM, Paketçi A, Acar S, Kotan LD, Demir K, Abacı A, Böber E. A nonsense variant in FGFR1: a rare cause of combined pituitary hormone deficiency. J Pediatr Endocrinol Metab, 2020, 33(12): 1613-1615.
doi: 10.1515/jpem-2020-0029 |
[2] |
Bianco SDC, Kaiser UB. The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism. Nat Rev Endocrinol, 2009, 5(10): 569-576.
doi: 10.1038/nrendo.2009.177 pmid: 19707180 |
[3] |
Liu QX, Yin XQ, Li P. Clinical, hormonal, and genetic characteristics of 25 Chinese patients with idiopathic hypogonadotropic hypogonadism. BMC Endocr Disord, 2022, 22(1): 30.
doi: 10.1186/s12902-022-00940-9 |
[4] |
Seminara SB, Hayes FJ, Crowley WF. Gonadotropin- releasing hormone deficiency in the human (idiopathic hypogonadotropic hypogonadism and Kallmann's syndrome): pathophysiological and genetic considerations. Endocr Rev, 1998, 19(5): 521-539.
pmid: 9793755 |
[5] |
Teixeira L, Guimiot F, Dodé C, Fallet-Bianco C, Millar RP, Delezoide AL, Hardelin JP. Defective migration of neuroendocrine GnRH cells in human arrhinencephalic conditions. J Clin Invest, 2010, 120(10): 3668-3672.
doi: 10.1172/JCI43699 pmid: 20940512 |
[6] |
Forni PE, Taylor-Burds C, Melvin VS, Williams T, Wray S. Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH-1 neurons, sensory neurons, and olfactory ensheathing cells. J Neurosci, 2011, 31(18): 6915-6927.
doi: 10.1523/JNEUROSCI.6087-10.2011 pmid: 21543621 |
[7] |
Pitteloud N, Durrani S, Raivio T, Sykiotis GP. Complex genetics in idiopathic hypogonadotropic hypogonadism. Front Horm Res, 2010, 39: 142-153.
doi: 10.1159/000312700 pmid: 20389092 |
[8] |
Stamou MI, Brand H, Wang M, Wong I, Lippincott MF, Plummer L, Crowley WF, Talkowski M, Seminara S, Balasubramanian R. Prevalence and phenotypic effects of copy number variants in isolated hypogonadotropic hypogonadism. J Clin Endocrinol Metab, 2022, 107(8): 2228-2242.
doi: 10.1210/clinem/dgac300 pmid: 35574646 |
[9] |
Stamou MI, Cox KH, Crowley WF. Discovering genes essential to the hypothalamic hegulation of human reproduction using a human disease model: adjusting to life in the "-omics" era. Endocr Rev, 2015, 36(6): 603- 621.
doi: 10.1210/er.2015-1045 pmid: 26394276 |
[10] | Beate K, Joseph N, Nicolas de R, Wolfram K. Genetics of isolated hypogonadotropic hypogonadism: role of GnRH receptor and other genes. Int J Endocrinol, 2012, 2012: 147893. |
[11] |
Quaynor SD, Kim HG, Cappello EM, Williams T, Chorich LP, Bick DP, Sherins RJ, Layman LC. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil Steril, 2011, 96(6): 1424-1430. e6.
doi: 10.1016/j.fertnstert.2011.09.046 pmid: 22035731 |
[12] |
Dodé C, Levilliers J, Dupont JM, De Paepe A, Le Dû N, Soussi-Yanicostas N, Coimbra RS, Delmaghani S, Compain-Nouaille S, Baverel F, Pêcheux C, Le Tessier D, Cruaud C, Delpech M, Speleman F, Vermeulen S, Amalfitano A, Bachelot Y, Bouchard P, Cabrol S, Carel JC, de Waal HDV, Goulet-Salmon B, Kottler ML, Richard O, Sanchez-Franco F, Saura R, Young J, Petit C, Hardelin JP. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet, 2003, 33(4): 463-465.
pmid: 12627230 |
[13] |
Boyar RM, Wu RH, Kapen S, Hellman L, Weitzman ED, Finkelstein JW. Clinical and laboratory heterogeneity in idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab, 1976, 43(6): 1268-1275.
doi: 10.1210/jcem-43-6-1268 |
[14] | Boehm U, Bouloux PM, Dattani MT, de Roux N, Dodé C, Dunkel L, Dwyer AA, Giacobini P, Hardelin JP, Juul A, Maghnie M, Pitteloud N, Prevot V, Raivio T, Tena- Sempere M, Quinton R, Young J. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism—pathogenesis, diagnosis and treatment. Nat Rev Endocrinol, 2015, 11(9): 547-564. |
[15] |
Lewkowitz-Shpuntoff HM, Hughes VA, Plummer L, Au MG, Doty RL, Seminara SB, Chan YM, Pitteloud N, Crowley WF, Balasubramanian R. Olfactory phenotypic spectrum in idiopathic hypogonadotropic hypogonadism: pathophysiological and genetic implications. J Clin Endocrinol Metab, 2012, 97(1): E136-E144.
doi: 10.1210/jc.2011-2041 |
[16] | Xu H, Niu YH, Wang T, Liu SM, Xu H, Wang SG, Liu JH, Ye ZQ. Novel FGFR1 and KISS1R mutations in Chinese Kallmann syndrome males with cleft lip/palate. Biomed Res Int, 2015, 2015: 649698. |
[17] | Ying H, Sun Y, Wu HX, Jia WY, Guan QB, He Z, Gao L, Zhao JJ, Ji YM, Li GM, Xu C. Posttranslational modification defects in fibroblast growth factor receptor 1 as a reason for normosmic isolated hypogonadotropic hypogonadism. Oxid Med Cell Longev, 2020, 2020: 2358719. |
[18] |
Luo HJ, Zheng RZ, Zhao YG, Wu JY, Li J, Jiang F, Chen DN, Zhou XT, Li JD. A dominant negative FGFR1 mutation identified in a Kallmann syndrome patient. Gene, 2017, 621: 1-4.
doi: S0378-1119(17)30259-7 pmid: 28411082 |
[19] | Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics, 2002, Chapter 2: Unit 2. 3. |
[20] |
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods, 2010, 7(4): 248-249.
doi: 10.1038/nmeth0410-248 pmid: 20354512 |
[21] |
Schwarz JM, Rödelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods, 2010, 7(8): 575-576.
doi: 10.1038/nmeth0810-575 pmid: 20676075 |
[22] |
Uytingco CR, Green WW, Martens JR. Olfactory loss and dysfunction in ciliopathies: molecular mechanisms and potential therapies. Curr Med Chem, 2019, 26(17): 3103-3119.
doi: 10.2174/0929867325666180105102447 pmid: 29303074 |
[23] | Pitteloud N, Meysing A, Quinton R, Acierno JS, Dwyer AA, Plummer L, Fliers E, Boepple P, Hayes F, Seminara S, Hughes VA, Ma JH, Bouloux P, Mohammadi M, Crowley WF. Mutations in fibroblast growth factor receptor 1 cause Kallmann syndrome with a wide spectrum of reproductive phenotypes. Mol Cell Endocrinol, 2006, 254-255: 60-69. |
[24] |
Hébert JM, Lin M, Partanen J, Rossant J, Mcconnell SK. FGF signaling through FGFR1 is required for olfactory bulb morphogenesis. Development, 2003, 130(6): 1101-1111.
pmid: 12571102 |
[25] |
Falardeau J, Chung WCJ, Beenken A, Raivio T, Plummer L, Sidis Y, Jacobson-Dickman EE, Eliseenkova AV, Ma JH, Dwyer A, Quinton R, Na S, Hall JE, Huot C, Alois N, Pearce SHS, Cole LW, Hughes V, Mohammadi M, Tsai P, Pitteloud N. Decreased FGF 8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J Clin Invest, 2008, 118(8): 2822-2831.
doi: 10.1172/JCI34538 pmid: 18596921 |
[26] |
Mcewen DP, Koenekoop RK, Khanna H, Jenkins PM, Lopez I, Swaroop A, Martens JR. Hypomorphic CEP290/ NPHP6 mutations result in anosmia caused by the selective loss of G proteins in cilia of olfactory sensory neurons. Proc Natl Acad Sci USA, 2007, 104(40): 15917- 15922.
doi: 10.1073/pnas.0704140104 |
[27] |
Tata BK, Chung WCJ, Brooks LR, Kavanaugh SI, Tsai PS. Fibroblast growth factor signaling deficiencies impact female reproduction and kisspeptin neurons in mice. Biol Reprod, 2012, 86(4): 119.
doi: 10.1095/biolreprod.111.095992 pmid: 22278983 |
[28] |
Lee PL, Johnson DE, Cousens LS, Fried VA, Williams LT. Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science, 1989, 245(4913): 57-60.
pmid: 2544996 |
[29] |
Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev, 2005, 16(2): 107-137.
doi: 10.1016/j.cytogfr.2005.01.008 |
[30] |
Goetz R, Mohammadi M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat Rev Mol Cell Biol, 2013, 14(3): 166-180.
doi: 10.1038/nrm3528 |
[31] |
Sykiotis GP, Plummer L, Hughes VA, Au M, Durrani S, Nayak-Young S, Dwyer AA, Quinton R, Hall JE, Gusella JF, Seminara SB, Crowley WF, Pitteloud N. Oligogenic basis of isolated gonadotropin-releasing hormone deficiency. Proc Natl Acad Sci USA, 2010, 107(34): 15140-15144.
doi: 10.1073/pnas.1009622107 |
[32] |
Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev, 2005, 16(2): 139-149.
doi: 10.1016/j.cytogfr.2005.01.001 |
[33] |
Sato N, Katsumata N, Kagami M, Hasegawa T, Hori N, Kawakita S, Minowada S, Shimotsuka A, Shishiba Y, Yokozawa M, Yasuda T, Nagasaki K, Hasegawa D, Hasegawa Y, Tachibana K, Naiki Y, Horikawa R, Tanaka T, Ogata T. Clinical assessment and mutation analysis of Kallmann syndrome 1 (KAL1) and fibroblast growth factor receptor 1 (FGFR1, or KAL2) in five families and 18 sporadic patients. J Clin Endocrinol Metab, 2004, 89(3): 1079-1088.
doi: 10.1210/jc.2003-030476 |
[34] |
Raivio T, Sidis Y, Plummer L, Chen HB, Ma JH, Mukherjee A, Jacobson-Dickman E, Quinton R, Van Vliet G, Lavoie H, Hughes VA, Dwyer A, Hayes FJ, Xu SY, Sparks S, Kaiser UB, Mohammadi M, Pitteloud N. Impaired fibroblast growth factor receptor 1 signaling as a cause of normosmic idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab, 2009, 94(11): 4380-4390.
doi: 10.1210/jc.2009-0179 pmid: 19820032 |
[35] |
Wang DQ, Niu YH, Tan JH, Chen YW, Xu H, Ling Q, Gong JN, Ling L, Wang JX, Wang T, Liu JH. Combined in vitro and in silico analyses of FGFR1 variants: genotype-phenotype study in idiopathic hypogonadotropic hypogonadism. Clin Genet, 2020, 98(4): 341-352.
doi: 10.1111/cge.13814 |
[36] |
Miraoui H, Dwyer AA, Sykiotis GP, Plummer L, Chung W, Feng BH, Beenken A, Clarke J, Pers TH, Dworzynski P, Keefe K, Niedziela M, Raivio T, Crowley WF, Seminara SB, Quinton R, Hughes VA, Kumanov P, Young J, Yialamas MA, Hall JE, Van Vliet G, Chanoine JP, Rubenstein J, Mohammadi M, Tsai PS, Sidis Y, Lage K, Pitteloud N. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism. Am J Hum Genet, 2013, 92(5): 725-743.
doi: 10.1016/j.ajhg.2013.04.008 pmid: 23643382 |
[37] |
Akkuş G, Kotan LD, Durmaz E, Mengen E, Turan İ, Ulubay A, Gürbüz F, Yüksel B, Tetiker T, Topaloğlu AK. Hypogonadotropic hypogonadism due to novel FGFR1 mutations. J Clin Res Pediatr Endocrinol, 2017, 9(2): 95-100.
doi: 10.4274/jcrpe.3908 pmid: 28008864 |
[38] |
Vezzoli V, Duminuco P, Bassi I, Guizzardi F, Persani L, Bonomi M. The complex genetic basis of congenital hypogonadotropic hypogonadism. Minerva Endocrinol, 2016, 41(2): 223-239.
pmid: 26934720 |
[39] |
Costa-Barbosa FA, Balasubramanian R, Keefe KW, Shaw ND, Al-Tassan N, Plummer L, Dwyer AA, Buck CL, Choi JH, Seminara SB, Quinton R, Monies D, Meyer B, Hall JE, Pitteloud N, Crowley WF. Prioritizing genetic testing in patients with Kallmann syndrome using clinical phenotypes. J Clin Endocrinol Metab, 2013, 98(5): E943-E953.
doi: 10.1210/jc.2012-4116 |
[40] | Amato LGL, Montenegro LR, Lerario AM, Jorge AAL, Guerra Junior G, Schnoll C, Renck AC, Trarbach EB, Costa EMF, Mendonca BB, Latronico AC, Silveira LFG. New genetic findings in a large cohort of congenital hypogonadotropic hypogonadism. Eur J Endocrinol, 2019, 181(2): 103-119. |
[41] |
Choe J, Kim JH, Kim YA, Lee J. Dizygotic twin sisters with normosmic idiopathic hypogonadotropic hypogonadism caused by an FGFR1 gene variant. Ann Pediatr Endocrinol Metab, 2020, 25(3): 192-197.
doi: 10.6065/apem.1938148.074 |
[42] |
Hermanussen M, Sippell WG. Heterogeneity of Kallmann's syndrome. Clin Genet, 1985, 28(2): 106-111.
pmid: 4042391 |
[43] |
Hipkin LJ, Casson IF, Davis JC. Identical twins discordant for Kallmann's syndrome. J Med Genet, 1990, 27(3): 198-199.
pmid: 2325096 |
[44] |
Bonomi M, Libri DV, Guizzardi F, Guarducci E, Maiolo E, Pignatti E, Asci R, Persani L, Idiopathic Central Hypogonadism Study Group of the Italian Societies of Endocrinology and Pediatric Endocrinology and Diabetes. New understandings of the genetic basis of isolated idiopathic central hypogonadism. Asian J Androl, 2012, 14(1): 49-56.
doi: 10.1038/aja.2011.68 pmid: 22138902 |
[45] |
Network for Central Hypogonadism (Network Ipogonadismo Centrale, NICe) of Italian Societies of Endocrinology (SIE), of Andrology and Sexual Medicine (SIAMS) and of Peadiatric Endocrinology and Diabetes (SIEDP). Kallmann's syndrome and normosmic isolated hypogonadotropic hypogonadism: two largely overlapping manifestations of one rare disorder. J Endocrinol Invest, 2014, 37(5): 499-500.
doi: 10.1007/s40618-014-0063-z pmid: 24715232 |
[46] | Bhangoo A, Jacobson-Dickman E. The genetics of idiopathic hypogonadotropic hypogonadism: unraveling the biology of human sexual development. Pediatr Endocrinol Rev, 2009, 6(3): 395-404. |
[47] |
Bonomi M, Libri DV, Guizzardi F, Guarducci E, Maiolo E, Pignatti E, Asci R, Persani L, Idiopathic Central Hypogonadism Study Group of the Italian Societies of Endocrinology and Pediatric Endocrinology and Diabetes. New understandings of the genetic basis of isolated idiopathic central hypogonadism. Asian J Androl, 2012, 14(1): 49-56.
doi: 10.1038/aja.2011.68 pmid: 22138902 |
[48] |
Kim SH. Congenital hypogonadotropic hypogonadism and Kallmann syndrome: past, present, and future. Endocrinol Metab (Seoul), 2015, 30(4): 456-466.
doi: 10.3803/EnM.2015.30.4.456 pmid: 26790381 |
[49] |
Coppieters F, Lefever S, Leroy BP, De Baere E. CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Hum Mutat, 2010, 31(10): 1097-1108.
doi: 10.1002/humu.21337 pmid: 20690115 |
[50] |
Valente EM, Silhavy JL, Brancati F, Barrano G, Krishnaswami SR, Castori M, Lancaster MA, Boltshauser E, Boccone L, Al-Gazali L, Fazzi E, Signorini S, Louie CM, Bellacchio E, International Joubert Syndrome Related Disorders Study Group, Bertini E, Dallapiccola B, Gleeson JG. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat Genet, 2006, 38(6): 623-625.
doi: 10.1038/ng1805 pmid: 16682970 |
[51] |
Balasubramanian R, Dwyer A, Seminara SB, Pitteloud N, Kaiser UB, Crowley WF. Human GnRH deficiency: a unique disease model to unravel the ontogeny of GnRH neurons. Neuroendocrinology, 2010, 92(2): 81-99.
doi: 10.1159/000314193 pmid: 20606386 |
[52] |
Pitteloud N, Acierno JS, Meysing A, Eliseenkova AV, Ma JH, Ibrahimi OA, Metzger DL, Hayes FJ, Dwyer AA, Hughes VA, Yialamas M, Hall JE, Grant E, Mohammadi M, Crowley WF. Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci USA, 2006, 103(16): 6281-6286.
doi: 10.1073/pnas.0600962103 |
[1] | 卢涣滋,王迪侃,王智. HPV阳性口咽癌患者预后与T细胞浸润和新抗原负荷相关性分析[J]. 遗传, 2019, 41(8): 725-735. |
[2] | 李晓旭, 刘成, 李伟, 张增林, 高晓明, 周慧, 郭永峰. 番茄WOX转录因子家族的鉴定及其进化、表达分析[J]. 遗传, 2016, 38(5): 444-460. |
[3] | 杨姗姗,孙晓丽,于洋,才华,纪巍,柏锡,朱延明. 酵母双杂交筛选与GsCBRLK相互作用的蛋白质[J]. 遗传, 2013, 35(3): 388-394. |
[4] | 傅天韵,娄维义,石铁流. 不同宿主H1N1病毒血凝素蛋白(HA)受体结合位点的变异特征[J]. 遗传, 2010, 32(7): 701-711. |
[5] | 李志勇,郝志敏,董志平,司贺龙,董金皋 . 玉米大斑病菌钙调磷酸酶A亚基的克隆与特征分析[J]. 遗传, 2009, 31(10): 1059-1064. |
[6] | 李明,赵巧辉,陈其新,刘孟洲,石晓卫. 家兔BMP7基因的克隆及其生物信息学分析[J]. 遗传, 2008, 30(7): 885-892. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: