遗传 ›› 2024, Vol. 46 ›› Issue (1): 63-77.doi: 10.16288/j.yczz.23-212
收稿日期:
2023-08-04
修回日期:
2023-09-15
出版日期:
2024-01-20
发布日期:
2023-10-12
通讯作者:
杨恩年
E-mail:yangmanyu19861225@163.com;yangennian@126.com
作者简介:
杨漫宇,博士,助理研究员,研究方向:小麦遗传育种及分子细胞遗传学。E-mail: 基金资助:
Manyu Yang1(), Fangjie Yao1, Zujun Yang2, Ennian Yang1(
)
Received:
2023-08-04
Revised:
2023-09-15
Published:
2024-01-20
Online:
2023-10-12
Contact:
Ennian Yang
E-mail:yangmanyu19861225@163.com;yangennian@126.com
Supported by:
摘要:
六倍体小黑麦是普通小麦品种遗传改良的重要基因资源,可以拓宽小麦的遗传基础。本研究以六倍体小黑麦为供体向普通小麦转移黑麦染色质,以探明六倍体小黑麦×六倍体小麦杂交、回交后代的染色体遗传特性,为小黑麦种质材料的后续研究和利用奠定基础。以六倍体小黑麦16引171为母本,六倍体小麦川麦62为父本配制杂交及回交组合,利用非变性荧光原位杂交技术(non-denaturing florescence in situ hybridization,ND-FISH)对F1、BC1F1和BC1F2植株进行细胞学跟踪鉴定。结果表明,杂种F1回交结实率为2.61%;BC1F1植株2R染色体传递频率最高;BC1F2植株中黑麦染色体在后代的传递率为6R>4R>2R,小麦背景中5B-7B相互易位染色体在BC1F2植株中表现出严重偏分离。在BC1F1和BC1F2植株中观察到24种结构变异染色体,包括染色体片段、等臂易位染色体、易位染色体以及双着丝粒染色体,且部分BC1F2植株的种子表现粒长和千粒重均优于六倍体小麦亲本川麦62。因此,在利用六倍体小黑麦作为桥梁向普通小麦导入黑麦遗传物质时,应尽量采取多次回交的方式,使D组染色体迅速恢复,保证后代育性的恢复,同时关注染色体结构变异材料的潜在应用价值。
杨漫宇, 姚方杰, 杨足君, 杨恩年. 六倍体小黑麦×六倍体小麦杂交后代中染色体遗传与结构变异鉴定[J]. 遗传, 2024, 46(1): 63-77.
Manyu Yang, Fangjie Yao, Zujun Yang, Ennian Yang. Investigation of chromosomal genetic characteristics and identification of structural variation in the offspring of hexaploid triticale×hexaploid wheat[J]. Hereditas(Beijing), 2024, 46(1): 63-77.
表1
六倍体小黑麦×六倍体小麦回交BC1F1育性及染色体组成"
杂交组合 | 世代 | 材料 编号 | 育性 | 染色体 数目 | 黑麦染色体 | 5B/7B/5BS·7BS/5BL·7BL传递类型 | 其他及变异染色体 |
---|---|---|---|---|---|---|---|
16引171/ 川麦62// 川麦62 | BC1F1 | Z9-1 | 可育 | 44(3) | 2R、6R、4RBroken | 1*5B+1*7B+1*5BS·7BS+1*5BL·7BL | 1*6D |
Z9-2 | 不育 | 42(5) | 2R、3R、4R、6R、7R | 2*5BS·7BS+2*5BL·7BL | 1*1D、1*2D、1*3D、1*4D、1*6D | ||
Z9-3 | 不育 | 39(0) | / | 1*5B+1*7B+1*5BS·7BS+1*5BL·7BL | 1*1D、1*2D、1*3D | ||
Z9-4 | 不育 | 43(5) | 2R、3RBroken、4R、5R、7R | 2*5BS·7BS+2*5BL·7BL | 1*1D、1*2D、1*5D、1*7D | ||
Z9-5 | 不育 | 43(5) | 2R、3R、5R、6R、7R | 1*7B+1*5BS·7BS+2*5BL·7BL | 1*1D、1*2D、1*3D、1*5D、1*7D、3*7A | ||
Z9-6 | 不育 | 39(3T) | 1R、5R、7R、4DS·4DL-2RL | 1*5B+1*7B+1*5BS·7BS+1*5BL·7BL | 1*1D、1*2D、1*3D、1*4D、1*5D、1*6D、1*7D、4DS·4DL-2RL |
表2
BC1F2植株的染色体组成"
BC1F2植株的染色体数目 | BC1F2植株数 | 比例(%) | 黑麦染色体数目 | BC1F2植株数 | 比例(%) | 黑麦染色体 | BC1F2植株数 | 比例(%) |
---|---|---|---|---|---|---|---|---|
40 | 1 | 0.96 | 0 | 31 | 29.81 | 2R | 23 | 22.12 |
41 | 37 | 35.58 | 0.5 | 3 | 2.88 | 4RB | 35 | 33.65 |
41.5 | 3 | 2.88 | 1 | 42 | 40.38 | 6R | 41 | 39.42 |
42 | 34 | 32.69 | 1.5 | 8 | 7.69 | |||
42.5 | 8 | 7.69 | 2 | 15 | 14.42 | |||
43 | 10 | 9.62 | 3 | 3 | 2.88 | |||
43.5 | 1 | 0.96 | 3.5 | 1 | 0.96 | |||
44 | 7 | 6.73 | 4 | 1 | 0.96 | |||
44.5 | 1 | 0.96 | ||||||
45 | 2 | 1.92 |
表4
BC1F2植株中染色体结构变异"
BC1F2材料编号 | 染色体数目 | 黑麦染色体 | 变异类型 |
---|---|---|---|
23-F141-3 | 42.5 | 2RS | 2RS- |
23-F141-6 | 42 | 4RBroken | 3DL·3DL·2RL |
23-F141-11 | 41.5 | 6R、4RBroken | 2BS·2BLBroken |
23-F141-15 | 41.5 | 6RBroken | 6RS·6RLBroken |
23-F141-16 | 42.5 | 2RS、4RBroken | 2RS- |
23-F141-21 | 40 | / | 6DS·6DL·2AL |
23-F141-23 | 42.5 | 2RS、6R | 2RS- |
23-F141-27 | 43 | 2RL·2RL、6R、4RBroken | 2RL·2RL |
23-F141-44 | 43 | 6R、6RL、4RL? | 4RL?- |
23-F141-50 | 41 | / | 4BSBroken·4BL |
23-F141-54 | 45 | 2RBroken、6R、2*4RBroken | 2RS·2RLBroken |
23-F141-57 | 44 | 6R、6RL·4RLBroken | 4RLBroken·6RL |
23-F141-70 | 42.5 | 2R、2RS | 2RS- |
23-F141-74 | 42.5 | 6RS、4RBroken | 6RS- |
23-F141-79 | 42.5 | 2RS、4RBroken | 2RS- |
23-F141-82 | 42.5 | 4RBroken、6BS·2RL | 6BS·2RL、BSBroken·6BL |
23-F141-87 | 44.5 | 2R、2*4RBroken、6RS | 5BL·6RL |
23-F141-88 | 44 | 2R | 1*4BS·4BS、2*4BL·4BL |
23-F141-92 | 43.5 | 6R、6RS | 6RS- |
23-F141-93 | 42 | 2RS·2RS | 2RS·2RS |
23-F141-96 | 41 | / | 7DL·7AS·7AL |
23-F141-102 | 41.5 | 6R、6RL | 6RL- |
23-F141-103 | 41 | 7DL·2RS | 7DL·2RS |
23-F141-104 | 42.5 | 6R、4RBroken | 4BL- |
[1] |
Hao CY, Dong YC, Wang LF, You GX, Zhang HN, Ge HM, Jia JZ, Zhang XY. Genetic diversity and construction of core collection in Chinese wheat genetic resources. Chinese Sci Bull, 2008, 53(10): 1518-1526.
doi: 10.1007/s11434-008-0212-x |
[2] |
Fu YB, Somers DJ. Genome-wide reduction of genetic diversity in wheat breeding. Crop Sci, 2009, 49(1): 161-168.
doi: 10.2135/cropsci2008.03.0125 |
[3] | Gao Y, Yu JL, Zhao WF, Cheng DM, Peng T, Yin GH, Chen K. Evaluation and usage of wheat germplasms. J Anhui Agric Sci, 2020, 48(15): 48-50. |
高燕, 于金林, 赵伟峰, 成东梅, 彭涛, 尹国红, 陈坤. 小麦种质资源的鉴定评价与利用. 安徽农业科学, 2020, 48(15): 48-50. | |
[4] |
Howell T, Hale I, Jankuloski L, Bonafede M, Gilbert M, Dubcovsky J. Mapping a region within the 1RS.1BL translocation in common wheat affecting grain yield and canopy water status. Theor Appl Genet, 2014, 127(12): 2695-2709.
doi: 10.1007/s00122-014-2408-6 pmid: 25322723 |
[5] |
Jung WJ, Seo YW.Identification of novel C-repeat binding factor (CBF) genes in rye (Secale cereale L.) and expression studies. Gene, 2018, 684: 82-94.
doi: 10.1016/j.gene.2018.10.055 |
[6] |
Wehling P, Linz A, Hackauf B, Roux SR, Ruge B, Klocke B. Leaf-rust resistance in rye (Secale cereale L.). 1. Genetic analysis and mapping of resistance genes Pr1and Pr2. Theor Appl Genet, 2003, 107(3): 432-438.
pmid: 12721636 |
[7] |
Han GH, Liu SY, Wang J, Jin YL, Zhou YL, Luo QL, Liu H, Zhao H, An DG. Identification of an elite wheat-rye T1RS·1BL translocation line conferring high resistance to powdery mildew and stripe rust. Plant Dis, 2020, 104(11): 2940-2948.
doi: 10.1094/PDIS-02-20-0323-RE |
[8] |
Zhu SY, Du HN, Su FY, Wang J, Meng QF, Liu TL, Guo R, Chen ZZ, Li HH, Liu WX, Ma PT, He AG. Molecular cytogenetic analyses of two new wheat-rye 6RL translocation lines with resistance to wheat powdery mildew. The Crop J, 2023, 11(2): 584-592.
doi: 10.1016/j.cj.2022.07.017 |
[9] |
Marais GF, Horn M, Torr FD. Intergeneric transfer (rye to wheat) of a gene(s) for Russian wheat aphid resistance. Plant Breeding, 2010, 113(4): 265-271.
doi: 10.1111/pbr.1994.113.issue-4 |
[10] |
Hao M, Luo JT, Zhang LQ, Yuan ZW, Yang YW, Wu M, Chen WJ, Zheng YL, Zhang HG, Liu DC. Production of hexaploid triticale by a synthetic hexaploid wheat-rye hybrid method. Euphytica, 2013, 193(3): 347-357.
doi: 10.1007/s10681-013-0930-2 |
[11] | Gupta PK, Priyadarshan PM. Triticale: present status and future prospects. Adv Genet, 1982, 21: 255-345. |
[12] | Yu JJ.Cytological identification of hexaploid tritical- common wheat hybrids F2[Dissertation]. Sichuan Agricultural University, 2017. |
余建军. 六倍体小黑麦-普通小麦杂种F2细胞学鉴定[学位论文]. 四川农业大学, 2017. | |
[13] | Su HL, Yang JJ, Li GR. Gliadin analysis of new wheat germplasm with disease resistance derived from 6x triticale. Journal of Sichuan Agricultural University, 1999, 17(4):349-353. |
舒焕麟, 杨足君, 李光蓉. 含6×小黑麦血缘的抗病小麦新材料的选育及醇溶蛋白分析. 四川农业大学学报, 1999, 17(4): 349-353. | |
[14] | Li JL, Wang N, Guo DL, Guo CH, Xu XL. Studies on wheat-rye chromosomes substitution. Bull Bot Res, 2002, 22(2): 220-223. |
李集临, 王宁, 郭东林, 郭长虹, 徐香玲. 小麦-黑麦染色体代换的研究. 植物研究, 2002, 22(2): 220-223. | |
[15] | Chen YF, Song YX, Li ZQ, Lu HP, Guo DW, Han DJ, Li CL, Ren HL. Development of wheat new germplasm with stripe rust resisitance I.Transfer of gene resistant to stripe rust new races from hexaploid Triticale into T.aestivm. Journal of Northwest Sci-Tech University of Agriculture and Forestry(Natural Science Edition), 2003, 31(4): 19-22. |
陈耀锋, 宋运贤, 李振岐, 陆和平, 郭东伟, 韩德俊, 李春莲, 任惠莉. 小麦抗条锈新种质的创制 Ⅰ.外缘抗条锈基因的导入. 西北农林科技大学学报(自然科学版), 2003, 31(4): 19-22. | |
[16] |
Liu CY, Song QH, Zhang HJ, Yang ZJ, Hu YG, Miedaner T. Molecular cytogenetic characterization and phenotypic evaluation of new wheat-rye lines derived from hexaploid triticale 'Certa'×common wheat hybrids. Plant Breeding, 2017, 136(6): 809-819.
doi: 10.1111/pbr.2017.136.issue-6 |
[17] |
Han GH, Li HW, Cao LJ, Liu SY, Yan HW, Wang J, Zhou YL, An DG. A novel wheat-rye 2R (2D) disomic substitution line pyramids two types of resistance to powdery mildew. Plant Dis, 2022, 106(9): 2433-2440.
doi: 10.1094/PDIS-12-21-2765-RE pmid: 35188419 |
[18] | Yang MY, Yang ZJ, Yang WY, Yang EN. Development and identification of new wheat varieties(lines) with multiple translocation chromosomes via cytogenetic method. J Triticeae Crops, 2018, 38(2): 127-133. |
杨漫宇, 杨足君, 杨武云, 杨恩年. 多重易位小麦新品种(系)的选育及细胞学鉴定. 麦类作物学报, 2018, 38(2): 127-133. | |
[19] |
Han FP, Lamb JC, Birchler JA. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA, 2006, 103(9): 3238-3243.
doi: 10.1073/pnas.0509650103 pmid: 16492777 |
[20] |
Fu SL, Chen L, Wang YY, Li M, Yang ZJ, Qiu L, Yan BJ, Ren ZL, Tang ZX. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci Rep, 2015, 5(1): 10552.
doi: 10.1038/srep10552 |
[21] |
Tang ZX, Yang ZJ, Fu SL. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa 71, CCS1, and PA WRC.1 for FISH analysis. J Appl Genet, 2014, 55(3): 313-318.
doi: 10.1007/s13353-014-0215-z |
[22] | 王占斌, 孙仲平. 六倍体小黑麦与普通小麦杂交的细胞遗传学研究. 生物技术, 1999, 9(2): 4-6. |
[23] | Su HL, Yang ZJ, Li GR. Selection and evaluation of a wheat line SY95-71 as new yellow rust spreader. Journal of Sichuan Agricultural University, 1999, 17(3):249-253. |
舒焕麟, 杨足君, 李光蓉. 创新诱发材料SY95-71选育和利用价值研究. 四川农业大学学报, 1999, 17(3): 249-253. | |
[24] |
Lukaszewski AJ, Gustafson JP, Apolinarska B. Transmission of chromosomes through the eggs and pollen of triticale × wheat F1 hybrids. Theor Appl Genet, 1982, 63(1): 49-55.
doi: 10.1007/BF00303489 pmid: 24270700 |
[25] | Ren ZL, Lelley T, Robbelen G. Transmission of the wheat and rye chromosomes in octaploid triticale × common wheat populations. Acta Genetica Sinica, 1991, 18(2): 161-167. |
任正隆, Lelley T, Robbelen G. 小麦和黑麦染色体在小黑麦×小麦杂种的不同世代群体中的传递. 遗传学报, 1991, 18(2): 161-167. | |
[26] |
Fu SL, Tang ZX, Ren ZL. Establishment of wheat-rye addition lines and de novo powdery mildew resistance gene from chromosome 5R. Hereditas (Beijing), 2011, 33(11):1258-1262.
doi: 10.3724/SP.J.1005.2011.01258 |
符书兰, 唐宗祥, 任正隆. 小麦-黑麦附加系的创制及5R抗白粉病新基因的发现. 遗传, 2011, 33(11): 1258-1262.
doi: 10.3724/SP.J.1005.2011.01258 |
|
[27] | Law CN, Worland AJ. The control of adult-plant resistance to yellow rust by the translocated chromosome 5BS-7BS of bread wheat. Plant Breeding, 1997, 116(1): 59-63. |
[28] |
Badaeva ED, Dedkova OS, Gay G, Pukhalskyi VA, Zelenin AV, Bernard S, Bernard M. Chromosomal rearrangements in wheat: their types and distribution. Genome, 2007, 50(10): 907-926.
doi: 10.1139/g07-072 pmid: 18059554 |
[29] |
Yang MY, Li GR, Wan HS, Li LP, Li J, Yang WY, Pu ZJ, Yang ZJ, Yang EN. Identification of QTLs for stripe rust resistance in a recombinant inbred line population. Int J Mol Sci, 2019, 20(14): 3410.
doi: 10.3390/ijms20143410 |
[30] | Hu ZL, Luo JT, Wan LR, Luo J, Li YZ, Fu SL, Liu DC, Hao M, Tang ZX. Chromosomes polymorphisms of Sichuan wheat cultivars displayed by ND‑FISH landmarks. Cereal Res Commun, 2021, 5(2): 1-10. |
[31] |
Badaev NS, Badaeva ED, Bolsheva NL, Maximov NG, Zelenin AV. Cytogenetic analysis of forms produced by crossing hexaploid triticale with common wheat. Theor Appl Genet, 1985, 70(5): 536-541.
doi: 10.1007/BF00305987 pmid: 24253064 |
[32] |
Taketa S, Nakazaki T, Schwarzacher T, Heslop-Harrison JS.Detection of a 4DL chromosome segment translocated to rye chromosome 5R in an advanced hexaploid triticale line Bronco 90. Euphytica, 1997, 97(1): 91-96.
doi: 10.1023/A:1003080720269 |
[33] |
Orlovskaya OA, Leonova IN, Adonina IG, Salina EA, Khotyleva LV, Shumny VK. Molecular-cytogenetic analysis of triticale and wheat lines with introgressions of the tribe Triticeae species genetic material. Russ J Genet Appl Res, 2016, 6: 527-536.
doi: 10.1134/S2079059716050087 |
[34] |
Fu SL, Lv ZL, Guo X, Zhang XQ, Han FP. Alteration of terminal heterochromatin and chromosome rearrangements in derivatives of wheat-rye hybrids. J Genet Genomics, 2013, 40(8): 413-420.
doi: 10.1016/j.jgg.2013.05.005 pmid: 23969250 |
[35] |
Fu SL, Yang MY, Fei YY, Tan FQ, Ren ZL, Yan BJ, Zhang HY, Tang ZX. Alterations and abnormal mitosis of wheat chromosomes induced by wheat-rye monosomic addition lines. PLoS One, 2013, 8(7): e70483.
doi: 10.1371/journal.pone.0070483 |
[36] |
Liu C, Wang J, Fu SL, Wang L, Li HW, Wang M, Huang YH, Shi QH, Zhou YH, Guo XR, Zhu CL, Zhang J, Han FP. Establishment of a set of wheat-rye addition lines with resistance to stem rust. Theor Appl Genet, 2022, 135(7): 2469-2480.
doi: 10.1007/s00122-022-04127-7 pmid: 35676422 |
[37] |
Tang ZX, Li M, Chen L, Wang YY, Ren ZL, Fu SL. New types of wheat chromosomal structural variations in derivatives of wheat-rye hybrids. PLoS One, 2014, 9(10): e110282.
doi: 10.1371/journal.pone.0110282 |
[38] |
Rabinovich SV. Importance of wheat-rye translocations for breeding modern cultivar of Triticum aestivum L. Euphytica, 1998, 100 (1): 323-340.
doi: 10.1023/A:1018361819215 |
[39] |
Fu SL, Ren ZL, Chen XM, Yan BJ, Tan FQ, Fu TH, Tang ZX. New wheat-rye 5DS-4RS·4RL and 4RS-5DS·5DL translocation lines with powdery mildew resistance. J Plant Res, 2014, 127(6): 743-753.
doi: 10.1007/s10265-014-0659-6 pmid: 25163586 |
[40] |
An DG, Zheng Q, Zhou YL, Ma PT, Lv ZL, Li LH, Li B, Luo QL, Xu HX, Xu YF. Molecular cytogenetic characterization of a new wheat-rye 4R chromosome translocation line resistant to powdery mildew. Chromosome Res, 2013, 21(4): 419-432.
doi: 10.1007/s10577-013-9366-8 pmid: 23836161 |
[41] |
Wang CM, Zheng Q, Li LH, Niu YC, Wang HB, Li B, Zhang XT, Xu YF, An DG. Molecular cytogenetic characterization of a new T2BL·1RS wheat-rye chromosome translocation line resistant to stripe rust and powdery mildew. Plant Dis, 2009, 93(2): 124-129.
doi: 10.1094/PDIS-93-2-0124 pmid: 30764098 |
[1] | 马磊, 张婷婷. 应用嵌合基因实例拓展遗传学染色体畸变的教学[J]. 遗传, 2018, 40(12): 1129-1135. |
[2] | 高翼之. 摩尔根与染色体遗传学说的建立[J]. 遗传, 2002, 24(4): 459-462. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: