[1] Garg A. Acquired and inherited lipodystrophies. N Engl J Med, 2004, 350(1): 1220–1234.
[2] Hegele RA, Joy TR, Al-Attar S, Rutt BK. Thematic review series: Adipocyte Biology. Lipodystrophies: windows on adipose biology and metabolism. J Lipid Res, 2007, 48(7): 1433–1444.
[3] Reue K, Phan J. Metabolic consequences of lipodystrophy in mouse models. Curr Opin Clin Nutr Metab Care, 2006, 9(4): 436–441.
[4] Ahima RS. Adipose tissue as an endocrine organ. Obesity, 2006, 14(Suppl. 5): 242S–249S.
[5] Unger RH. Lipotoxic diseases. Annu Rev Med, 2002, 53(1): 319–336.
[6] Farmer SR. Transcriptional control of adipocyte formation. Cell Metab, 2006, 4(4): 263–273.
[7] Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Na Rev Mol Cell Biol, 2006, 7(12): 885–896.
[8] Phan J, Péterfy M, Reue K. Lipin expression preceding peroxisome proliferator-activated receptor-gamma is critical for adipogenesis in vivo and in vitro. J Biol Chem, 2004, 279(28): 29558–29564.
[9] van Harmelen V, Ryden M, Sjolin E, Hoffstedt J. A role of lipin in human obesity and insulin resistance: relation to adipocyte glucose transport and GLUT4 expression. J Lipid Res, 2007, 48(1): 201–206.
[10] Langner CA, Birkenmeier EH, Ben-Zeev O, Schotz MC, Sweet HO, Davisson MT, Gordon JI. The fatty liver dys-trophy (fld) mutation. A new mutant mouse with a devel-opmental abnormality in triglyceride metabolism and as-sociated tissue-specific defects in lipoprotein lipase and hepatic lipase activities. J Biol Chem, 1989, 264(14): 7994–8003.
[11] Langner CA, Birkenmeier EH, Roth KA, Bronson RT, Gordon JI. Characterization of the peripheral neuropathy in neonatal and adult mice that are homozygous for the fatty liver dystrophy (fld) mutation. J Biol Chem, 1991, 266(18): 11955–11964.
[12] Reue K, Xu P, Wang XP, Slavin BG. Adipose tissue defi-ciency, glucose intolerance, and increased atherosclerosis result from mutation in the mouse fatty liver dystrophy (fld) gene. J Lipid Res, 2000, 41(7): 1067–1076.
[13] Péterfy M, Phan J, Xu P, Reue K. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet, 2001, 27(1): 121–124.
[14] Huffman TA, Mothe-Satney I, Lawrence JC Jr. Insu-lin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin. Proc Natl Acad Sci USA, 2002, 99(2): 1047–1052.
[15] Péterfy M, Phan J, Reue K. Alternatively spliced lipin isoforms exhibit distinct expression pattern, subcellular localization, and role in adipogenesis. J Biol Chem, 2005, 280(38): 32883–32889.
[16] Finck BN, Gropler MC, Chen Z, Leone TC, Croce MA, Harris TE, Lawrence JC Jr, Kelly DP. Lipin 1 is an induc-ible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab, 2006, 4(3): 199–210.
[17] Han GS, Wu WI, Carman GM. The Saccharomyces cere-visiae lipin homolog is an Mg2+-dependent phosphatidate phosphatase enzyme. J Biol Chem, 2006, 281(14): 9210–9218.
[18] Han GS, Siniossoglou S, Carman GM. The cellular func-tions of the yeast lipin homolog PAH1p are dependent on its phosphatidate phosphatase activity. J Biol Chem, 2007, 282(51): 37026–37035.
[19] O'Hara L, Han GS, Peak-Chew S, Grimsey N, Carman GM, Siniossoglou S. Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg2+-dependent phosphatidate phosphatase. J Biol Chem, 2006, 281(45): 34537–34548.
[20] He XP, Xu XW, Zhao SH, Fan B, Yu M, Zhu MJ, Li CC, Peng ZZ, Liu B. Investigation of Lpin1 as a candidate gene for fat deposition in pigs. Mol Biol Rep, 2009, 36(5): 1175–1180.
[21] He XP, Xu XW, Liu B. Molecular characterization, chro-mosomal locali |