遗传 ›› 2022, Vol. 44 ›› Issue (2): 96-106.doi: 10.16288/j.yczz.21-211
刘聪(), 冯佳妮, 李玮玮, 朱伟伟, 薛云新, 王岱, 赵西林()
收稿日期:
2021-10-16
修回日期:
2021-12-14
出版日期:
2022-02-20
发布日期:
2021-12-28
通讯作者:
赵西林
E-mail:1193850497@qq.com;zhaox5@xmu.edu.cn
作者简介:
刘聪,硕士研究生,专业方向:转化医学。E-mail: 基金资助:
Cong Liu(), Jiani Feng, Weiwei Li, Weiwei Zhu, Yunxin Xue, Dai Wang, Xilin Zhao()
Received:
2021-10-16
Revised:
2021-12-14
Online:
2022-02-20
Published:
2021-12-28
Contact:
Zhao Xilin
E-mail:1193850497@qq.com;zhaox5@xmu.edu.cn
Supported by:
摘要:
作为DNA合成的重要前体,细胞中4种脱氧核糖核苷三磷酸(dATP、dTTP、dGTP和dCTP)是DNA复制、重组和修复所必需的原材料,而DNA的正确合成及其完整性则是基因组稳定性的重要体现,因此dNTP库状态的稳定对维持基因组的稳定进而保证细胞的稳定至关重要。从dNTP库的质量上讲,一些异质dNTP如氧化的dNTP掺入DNA容易引发碱基替换甚至DNA断裂重排,会极大地损害基因组的稳定性。但与此同时,细胞也进化出了相应的NTP焦磷酸酶将其清除,并且细胞也会通过形成DNA损伤修复网络来校正损伤的DNA及修复DNA缺口。从dNTP库的数量上讲,dNTP的浓度及比例失衡也会造成碱基突变和移码突变,这同样会引发基因组不的稳定性,由此细胞进化出了庞大的酶控网络以对其进行精密调控。本文主要综述细胞内dNTP库组分受损的潜在危害及受损dNTP的清除和dNTP库组分间平衡的调控及失衡的后果,最后介绍了与dNTP库稳态相关的临床疾病,旨在为细胞dNTP库的稳态维持与基因组稳定性的相关性研究提供一定的思路方向,最终为相关疾病的治疗提供部分理论依据。
刘聪, 冯佳妮, 李玮玮, 朱伟伟, 薛云新, 王岱, 赵西林. 细胞dNTP库的稳态维持与基因组稳定性[J]. 遗传, 2022, 44(2): 96-106.
Cong Liu, Jiani Feng, Weiwei Li, Weiwei Zhu, Yunxin Xue, Dai Wang, Xilin Zhao. Maintenance of dNTP pool homeostasis and genomic stability[J]. Hereditas(Beijing), 2022, 44(2): 96-106.
[1] |
Bębenek A, Ziuzia-Graczyk I. Fidelity of DNA replication- a matter of proofreading. Curr Genet, 2018, 64(5):985-996.
doi: 10.1007/s00294-018-0820-1 pmid: 29500597 |
[2] | Pezo V, Hassan C, Louis D, Sargueil B, Herdewijn P, Marlière P. Metabolic recruitment and directed evolution of nucleoside triphosphate uptake in Escherichia coli. ACS Synth Biol, 2018, 7(6):1565-1572. |
[3] | Darmon E, Leach DR. Bacterial genome instability. Microbiol Mol Biol Rev, 2014, 78(1):1-39. |
[4] |
Tsegay PS, Lai YH, Liu Y. Replication stress and consequential instability of the genome and epigenome. Molecules, 2019, 24(21):3870.
doi: 10.3390/molecules24213870 |
[5] |
Sies H, Jones DP. Reactive oxygen species (ROS)as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol, 2020, 21(7):363-383.
doi: 10.1038/s41580-020-0230-3 |
[6] |
Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol, 2019, 25:101084.
doi: 10.1016/j.redox.2018.101084 |
[7] |
Lindahl T. Instability and decay of the primary structure of DNA. Nature, 1993, 362(6422):709-15.
doi: 10.1038/362709a0 |
[8] |
Gorini F, Scala G, Cooke MS, Majello B, Amente S. Towards a comprehensive view of 8-oxo-7,8-dihydro- 2′-deoxyguanosine: Highlighting the intertwined roles of DNA damage and epigenetics in genomic instability. DNA Repair (Amst), 2021, 97:103027.
doi: 10.1016/j.dnarep.2020.103027 |
[9] |
Giorgio M, Dellino GI, Gambino V, Roda N, Pelicci PG. On the epigenetic role of guanosine oxidation. Redox Biol, 2020, 29:101398.
doi: S2213-2317(19)31064-X pmid: 31926624 |
[10] |
D′Augustin O, Huet S, Campalans A, Radicella JP. Lost in the crowd: how does human 8-oxoguanine DNA glycosylase 1 (OGG1) find 8-oxoguanine in the genome? Int J Mol Sci, 2020, 21(21):8360.
doi: 10.3390/ijms21218360 |
[11] |
Maga G, Villani G, Crespan E, Wimmer U, Ferrari E, Bertocci B, Hubscher U. 8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins. Nature, 2007, 447(7144):606-608.
doi: 10.1038/nature05843 |
[12] |
Krahn JM, Beard WA, Miller H, Grollman AP, Wilson SH. Structure of DNA polymerase beta with the mutagenic DNA lesion 8-oxodeoxyguanine reveals structural insights into its coding potential. Structure, 2003, 11(1):121-127.
doi: 10.1016/S0969-2126(02)00930-9 |
[13] |
Stoddard S, Riggleman A, Carpenter A, Baranova A. The detection of 8-oxo-7,8-dihydro-2ʹ-deoxyguanosine in circulating cell-free DNA: a step towards longitudinal monitoring of health. Adv Exp Med Biol, 2020, 1241:125-138.
doi: 10.1007/978-3-030-41283-8_8 pmid: 32383119 |
[14] | Grøsvik K, Tesfahun AN, Muruzábal-Lecumberri I, Haugland GT, Leiros I, Ruoff P, Kvaløy JT, Knævelsrud I, Ånensen H, Alexeeva M, Sato K, Matsuda A, Alseth I, Klungland A, Bjelland S. TheEscherichia coli alkA gene is activated to alleviate mutagenesis by an oxidized deoxynucleoside. Front Microbiol, 2020, 1:263. |
[15] |
Lindahl T, Barnes DE. Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol, 2000, 65:127-133.
pmid: 12760027 |
[16] | Sakumi K, Abolhassani N, Behmanesh M, Iyama T, Tsuchimoto D, Nakabeppu Y. ITPA protein, an enzyme that eliminates deaminated purine nucleoside triphosphates in cells. Mutat Res, 2010, 703(1):43-50. |
[17] |
James AM, Seal SE, Bailey AM, Foster GD. Viral inosine triphosphatase: a mysterious enzyme with typical activity, but an atypical function. Mol Plant Pathol, 2021, 22(3):382-389.
doi: 10.1111/mpp.13021 pmid: 33471956 |
[18] |
Kraszewska E, Drabinska J. Nudix proteins affecting microbial pathogenesis. Microbiology (Reading), 2020, 166(12):1110-1114.
doi: 10.1099/mic.0.000993 |
[19] |
Bessman MJ. A cryptic activity in the Nudix hydrolase superfamily. Protein Sci, 2019, 28(8):1494-1500.
doi: 10.1002/pro.v28.8 |
[20] |
Bhatnagar SK, Bessman MJ. Studies on the mutator gene,mutT of Escherichia coli. Molecular cloning of the gene, purification of the gene product, and identification of a novel nucleoside triphosphatase. J Biol Chem, 1988, 263(18):8953-8957.
pmid: 3288626 |
[21] |
Maki H, Sekiguchi M. MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature, 1992, 355(6357):273-275.
doi: 10.1038/355273a0 |
[22] |
Rai P, Sobol RW. Mechanisms of MTH1 inhibition- induced DNA strand breaks: the slippery slope from the oxidized nucleotide pool to genotoxic damage. DNA Repair (Amst), 2019, 77:18-26.
doi: 10.1016/j.dnarep.2019.03.001 |
[23] |
Srouji JR, Xu AT, Park A, Kirsch JF, Brenner SE. The evolution of function within the nudix homology clan. Proteins, 2017, 85(5):775-811.
doi: 10.1002/prot.v85.5 |
[24] | Pecsi I, Hirmondo R, Brown AC, Lopata A, Parish T, Vertessy BG, Toth J. The dUTPase enzyme is essential inMycobacterium smegmatis. PLoS One, 2012, 7(5):37461. |
[25] |
Tchigvintsev A, Singer AU, Flick R, Petit P, Brown G, Evdokimova E, Savchenko A, Yakunin AF. Structure and activity of theSaccharomyces cerevisiae dUTP pyrophosphatase DUT1, an essential housekeeping enzyme. Biochem J, 2011, 437(2):243-253.
doi: 10.1042/BJ20110304 pmid: 21548881 |
[26] |
Benedek A, Temesváry-Kis F, Khatanbaatar T, Leveles I, Surányi EV, Szabó JE, Wunderlich L, Vértessy BG. The role of a key amino acid position in species-specific proteinaceous dUTPase inhibition. Biomolecules, 2019, 9(6):221.
doi: 10.3390/biom9060221 |
[27] |
Kerepesi C, Szabó JE, Papp-Kádár V, Dobay O, Szabó D, Grolmusz V, Vértessy BG. Life without dUTPase. Front Microbiol, 2016, 7:1768.
pmid: 27933035 |
[28] |
Kumar H, Kehrer J, Singer M, Reinig M, Santos JM, Mair GR, Frischknecht F. Functional genetic evaluation of DNA house-cleaning enzymes in the malaria parasite: dUTPase and Ap4AH are essential in Plasmodium berghei but ITPase and NDH are dispensable. Expert Opin Ther Targets, 2019, 23(3):251-261.
doi: 10.1080/14728222.2019.1575810 |
[29] |
Burgis NE. A disease spectrum for ITPA variation: advances in biochemical and clinical research. J Biomed Sci, 2016, 23(1):73.
doi: 10.1186/s12929-016-0291-y |
[30] | Liakopoulou A, Alivisatos SG. Distribution of nucleoside triphosphatases in human erythrocytes. Biochim Biophys Acta, 1964, 89:158-161. |
[31] |
Yoneshima Y, Abolhassani N, Iyama T, Sakumi K, Shiomi N, Mori M, Shiomi T, Noda T, Tsuchimoto D, Nakabeppu Y. Deoxyinosine triphosphate induces MLH1/PMS2- and p53-dependent cell growth arrest and DNA instability in mammalian cells. Sci Rep, 2016, 6:32849.
doi: 10.1038/srep32849 pmid: 27618981 |
[32] |
Behmanesh M, Sakumi K, Abolhassani N, Toyokuni S, Oka S, Ohnishi YN, Tsuchimoto D, Nakabeppu Y. ITPase- deficient mice show growth retardation and die before weaning. Cell Death Differ, 2009, 16(10):1315-22.
doi: 10.1038/cdd.2009.53 pmid: 19498443 |
[33] |
Moroz OV, Harkiolaki M, Galperin MY, Vagin AA, Gonzalez-Pacanowska D, Wilson KS. The crystal structure of a complex of Campylobacter jejuni dUTPase with substrate analogue sheds light on the mechanism and suggests the “basic module” for dimeric d(C/U)TPases. J Mol Biol, 2004, 342(5):1583-1597.
doi: 10.1016/j.jmb.2004.07.050 |
[34] |
Rotoli SM, Jones JL, Caradonna SJ. Cysteine residues contribute to the dimerization and enzymatic activity of human nuclear dUTP nucleotidohydrolase (nDut). Protein Sci. 2018, 27(10):1797-1809.
doi: 10.1002/pro.3481 |
[35] |
Lee S, Kim MH, Kang BS, Kim JS, Kim GH, Kim YG, Kim KJ. Crystal structure of Escherichia coli MazG, the regulator of nutritional stress response. J Biol Chem, 2008, 283(22):15232-15240.
doi: 10.1074/jbc.M800479200 |
[36] |
Moroz OV, Murzin AG, Makarova KS, Koonin EV, Wilson KS, Galperin MY. Dimeric dUTPases, HisE, and MazG belong to a new superfamily of all-alpha NTP pyrophosphohydrolases with potential "house- cleaning" functions. J Mol Biol, 2005, 347(2):243-255.
pmid: 15740738 |
[37] | Lyu LD, Tang BK, Fan XY, Ma H, Zhao GP. Mycobacterial mazG safeguards genetic stability via housecleaning of 5-OH-dCTP. PLoS Pathog, 2013, 9(12):1003814. |
[38] |
Martínez-Arribas B, Requena CE, Pérez-Moreno G, Ruíz- Pérez LM, Vidal AE, Gonzaález-Pacanowska D. DCTPP1 prevents a mutator phenotype through the modulation of dCTP, dTTP and dUTP pools. Cell Mol Life Sci, 2020, 77(8):1645-1660.
doi: 10.1007/s00018-019-03250-x pmid: 31377845 |
[39] | Kapoor I, Emam EAF, Shaw A, Varshney U. Nucleoside diphosphate kinase escalates A-to-C mutations in MutT-deficient strains ofEscherichia coli. J Bacteriol, 2019, 202(1):567-586. |
[40] |
Acharya N, Manohar K, Peroumal D, Khandagale P, Patel SK, Sahu SR, Kumari P. Multifaceted activities of DNA polymerase η: beyond translesion DNA synthesis. Curr Genet, 2019, 65(3):649-656.
doi: 10.1007/s00294-018-0918-5 |
[41] | Yao R, Shi LJ, Wu CJ, Qiao WH, Liu LM, Wu J. Lsm12 mediates deubiquitination of DNA polymerase η to helpSaccharomyces cerevisiae resist oxidative stress. Appl Environ Microbiol, 2018, 85(1):1988-2006. |
[42] |
Rodriguez GP, Song JB, Crouse GF. In vivo bypass of 8-oxodG. PLoS Genet, 2013, 9(8):1003682.
doi: 10.1371/journal.pgen.1003682 pmid: 23935538 |
[43] |
Liu B, Großhans J. The role of dNTP metabolites in control of the embryonic cell cycle. Cell Cycle, 2019, 18(21):2817-2827.
doi: 10.1080/15384101.2019.1665948 |
[44] |
Mertz TM, Sharma S, Chabes A, Shcherbakova PV. Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity. Proc Natl Acad Sci USA, 2015, 112(19):E2467-E2476.
doi: 10.1073/pnas.1422934112 |
[45] |
Bu PL, Nagar S, Bhagwat M, Kaur P, Shah A, Zeng J, Vancurova I, Vancura A. DNA damage response activates respiration and thereby enlarges dNTP pools to promote cell survival in budding yeast. J Biol Chem, 2019, 294(25):9771-9786.
doi: 10.1074/jbc.RA118.007266 |
[46] |
Gon S, Napolitano R, Rocha W, Coulon S, Fuchs RP. Increase in dNTP pool size during the DNA damage response plays a key role in spontaneous and induced-mutagenesis in Escherichia coli. Proc Natl Acad Sci USA, 2011, 108(48):19311-19316.
doi: 10.1073/pnas.1113664108 |
[47] |
Panzarino NJ, Krais JJ, Cong K, Peng M, Mosqueda M, Nayak SU, Bond SM, Calvo JA, Doshi MB, Bere M, Ou JH, Deng B, Zhu LJ, Johnson N, Cantor SB. Replication gaps underlie BRCA deficiency and therapy response. Cancer Res, 2021, 81(5):1388-1397.
doi: 10.1158/0008-5472.CAN-20-1602 |
[48] |
Zhou ZX, Williams JS, Lujan SA, Kunkel TA. Ribonucleotide incorporation into DNA during DNA replication and its consequences. Crit Rev Biochem Mol Biol, 2021, 56(1):109-124.
doi: 10.1080/10409238.2020.1869175 |
[49] |
Miller JH, Funchain P, Clendenin W, Huang T, Nguyen A, Wolff E, Yeung A, Chiang JH, Garibyan L, Slupska MM, Yang HJ. Escherichia coli strains(ndk) lacking nucleoside diphosphate kinase are powerful mutators for base substitutions and frameshifts in mismatch-repair-deficient strains. Genetics, 2002, 162(1):5-13.
doi: 10.1093/genetics/162.1.5 |
[50] |
Kumar D, Abdulovic AL, Viberg J, Nilsson AK, Kunkel TA, Chabes A. Mechanisms of mutagenesis in vivo due to imbalanced dNTP pools. Nucleic Acids Res, 2011, 39(4):1360-1371.
doi: 10.1093/nar/gkq829 |
[51] |
Schmidt TT, Sharma S, Reyes GX, Gries K, Gross M, Zhao B, Yuan JH, Wade R, Chabes A, Hombauer H. A genetic screen pinpoints ribonucleotide reductase residues that sustain dNTP homeostasis and specifies a highly mutagenic type of dNTP imbalance. Nucleic Acids Res, 2019, 47(1):237-252.
doi: 10.1093/nar/gky1154 pmid: 30462295 |
[52] |
Shu Z, Li Z, Huang HH, Chen Y, Fan J, Yu L, Wu ZH, Tian L, Qi Q, Peng S, Wei CY, Xie ZQ, Li XB, Feng Q, Sheng H, Li GQ, Wei DP, Shan CL, Chen G. Cell-cycle-dependent phosphorylation of RRM1 ensures efficient DNA replication and regulates cancer vulnerability to ATR inhibition. Oncogene, 2020, 39(35):5721-5733.
doi: 10.1038/s41388-020-01403-y |
[53] |
Maslowska KH, Makiela-Dzbenska K, Fijalkowska IJ. The SOS system: A complex and tightly regulated response to DNA damage. Environ Mol Mutagen, 2019, 60(4):368-384.
doi: 10.1002/em.v60.4 |
[54] |
Akdemir F, Christich A, Sogame N, Chapo J, Abrams JM. p53 directs focused genomic responses in Drosophila. Oncogene, 2007, 26(36):5184-5193.
pmid: 17310982 |
[55] |
Kapoor I, Varshney U. Diverse roles of nucleoside diphosphate kinase in genome stability and growth fitness. Curr Genet, 2020, 66(4):671-682.
doi: 10.1007/s00294-020-01073-z pmid: 32249353 |
[56] |
Mauney CH, Hollis T. SAMHD1: recurring roles in cell cycle, viral restriction, cancer, and innate immunity. Autoimmunity, 2018, 51(3):96-110.
doi: 10.1080/08916934.2018.1454912 |
[57] |
Schmidt TT, Sharma S, Reyes GX, Kolodziejczak A, Wagner T, Luke B, Hofer A, Chabes A, Hombauer H. Inactivation of folylpolyglutamate synthetase Met7 results in genome instability driven by an increased dUTP/dTTP ratio. Nucleic Acids Res, 2020, 48(1):264-277.
doi: 10.1093/nar/gkz1006 pmid: 31647103 |
[58] |
Bradshaw JS, Kuzminov A. RdgB acts to avoid chromosome fragmentation in Escherichia coli. Mol Microbiol, 2003, 48(6):1711-1725.
pmid: 12791149 |
[59] |
Tsuzuki T, Egashira A, Igarashi H, Iwakuma T, Nakatsuru Y, Tominaga Y, Kawate H, Nakao K, Nakamura K, Ide F, Kura S, Nakabeppu Y, Katsuki M, Ishikawa T, Sekiguchi M. Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. Proc Natl Acad Sci USA, 2001, 98(20):11456-11461.
doi: 10.1073/pnas.191086798 |
[60] |
Nakabeppu Y, Kajitani K, Sakamoto K, Yamaguchi H, Tsuchimoto D. MTH1, an oxidized purine nucleoside triphosphatase, prevents the cytotoxicity and neurotoxicity of oxidized purine nucleotides. DNA Repair (Amst), 2006, 5(7):761-72.
doi: 10.1016/j.dnarep.2006.03.003 |
[61] |
Koziorowski D, Figura M, Milanowski ŁM, Szlufik S, Alster P, Madetko N, Friedman A. Mechanisms of neurodegeneration in various forms of Parkinsonism- similarities and differences. Cells, 2021, 10(3):656.
doi: 10.3390/cells10030656 |
[62] | Buccellato FR, DʼAnca M, Fenoglio C, Scarpini E, Galimberti D. Role of oxidative damage in Alzheimer's disease and neurodegeneration: From pathogenic mechanisms to biomarker discovery. Antioxidants (Basel), 2021, 10(9):1353. |
[63] |
Cheng ZF, Zuo Y, Li Z, Rudd KE, Deutscher MP. The vacB gene required for virulence in Shigella flexneri and Escherichia coli encodes the exoribonuclease RNase R. J Biol Chem, 1998, 273(23):14077-14080.
doi: 10.1074/jbc.273.23.14077 pmid: 9603904 |
[64] |
Xu X, Page JL, Surtees JA, Liu HC, Lagedrost S, Lu Y, Bronson R, Alani E, Nikitin AY, Weiss RS. Broad overexpression of ribonucleotide reductase genes in mice specifically induces lung neoplasms. Cancer Res, 2008, 68(8):2652-2660.
doi: 10.1158/0008-5472.CAN-07-5873 |
[65] |
Shimizu I, Yoshida Y, Suda M, Minamino T. DNA damage response and metabolic disease. Cell Metab, 2014, 20(6):967-977.
doi: 10.1016/j.cmet.2014.10.008 pmid: 25456739 |
[66] |
Buj R, Aird KM. Deoxyribonucleotide triphosphate metabolism in cancer and metabolic disease. Front Endocrinol (Lausanne), 2018, 9:177.
doi: 10.3389/fendo.2018.00177 |
[67] |
Greene BL, Kang G, Cui C, Bennati M, Nocera DG, Drennan CL, Stubbe J. Ribonucleotide reductases: structure, chemistry, and metabolism suggest new therapeutic targets. Annu Rev Biochem, 2020, 89:45-75.
doi: 10.1146/annurev-biochem-013118-111843 |
[68] |
Kohnken R, Kodigepalli KM, Wu L. Regulation of deoxynucleotide metabolism in cancer: novel mechanisms and therapeutic implications. Mol Cancer, 2015, 14:176.
doi: 10.1186/s12943-015-0446-6 |
[69] |
Subramaniam R, Lamb NA, Hwang Y, Johengen L, Surtees JA. Extracting and measuring dNTP pools in Saccharomyces cerevisiae. Methods Mol Biol, 2019, 1999:103-127.
doi: 10.1007/978-1-4939-9500-4_6 pmid: 31127572 |
[70] |
Landoni JC, Wang L, Suomalainen A. Whole-cell and mitochondrial dNTP pool quantification from cells and tissues. Methods Mol Biol, 2021, 2276:143-151.
doi: 10.1007/978-1-0716-1266-8_10 pmid: 34060038 |
[1] | 司鑫鑫, 孙玉洁. DNA甲基化异常与肿瘤耐药[J]. 遗传, 2014, 36(5): 411-419. |
[2] | 潘学峰, 姜楠, 陈细芳, 周晓宏, 丁良, 段斐. R环的形成及对基因组稳定性的影响[J]. 遗传, 2014, 36(12): 1185-1194. |
[3] | 孙德明,王天奇,朱晓红,殷昆仑,岳秉飞,崔宗斌,孙荣泽,张博. 实验用鱼遗传质量控制及标准化[J]. 遗传, 2012, 34(9): 1202-1207. |
[4] | 田靖,陈娜,赵志虎,陈惠鹏. 4C-克隆筛选过程中的质量控制[J]. 遗传, 2011, 33(4): 404-410. |
[5] | 冯碧薇,陈建强,雷秉坤,潘贤,吕红. 酵母模式生物研究表观遗传调控基因组稳定性的进展[J]. 遗传, 2010, 32(8): 799-807. |
[6] | 唐胜球,江青艳,杨楚芬,邹晓庭,董小英. Lipin家族研究进展[J]. 遗传, 2010, 32(10): 981-993. |
[7] | 曹宗富,曹彦荣,马立广,彭左旗,胡序怀,王媛媛,徐玖瑾,马旭. 中国人类遗传资源共享利用的标准化研究[J]. 遗传, 2008, 30(1): 51-58. |
[8] | 李稚锋,李玉鉴,赵东升,杭兴宜,王正志,骆志刚5,张成岗. 基于RefSeq数据库的人类标准转录数据集的构建[J]. 遗传, 2006, 28(3): 329-333. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: