[1] Jennissen HP. Ubiquitin and the enigma of intracellular protein degradation. Eur J Biochem, 1995, 231(1): 1-30.[2] Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem, 2001, 70: 503- 533.[3] Dye BT, Schulman BA. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu Rev Biophys Biomol Struct, 2007, 36: 131-150.[4] Ye YH, Rape M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol, 2009, 10(11): 755-764.[5] Neutzner M, Neutzner A. Enzymes of ubiquitination and deubiquitination. Essays Biochem, 2012, 52(1): 37-50.[6] Muratani M, Tansey WP. How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol, 2003, 4(3): 192-201.[7] Pornillos O, Garrus JE, Sundquist WI. Mechanisms of enveloped RNA virus budding. Trends Cell Biol, 2002, 12(12): 569-579.[8] Terrell J, Shih S, Dunn R, Hicke L. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol Cell, 1998, 1(2): 193-202.[9] Rome S, Meugnier E, Vidal H. The ubiquitin-proteasome pathway is a new partner for the control of insulin signal-ing. Curr Opin Clin Nutr Metab Care, 2004, 7(3): 249-254.[10] Izzi L, Attisano L. Regulation of the TGFβ signalling pathway by ubiquitin-mediated degradation. Oncogene, 2004, 23(11): 2071-2078.[11] Hicke L. Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol, 2001, 2(3): 195- 201.[12] Pickart CM. Ubiquitin enters the new millennium. Mol Cell, 2001, 8(3): 499-504.[13] Herrmann J, Lerman LO, Lerman A. Ubiquitin and ubiq-uitin-like proteins in protein regulation. Circ Res, 2007, 100(9): 1276-1291.[14] Welchman RL, Gordon C, Mayer RJ. Ubiquitin and ubiq-uitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol, 2005, 6(8): 599-609.[15] Shaid S, Brandts CH, Serve H, Dikic I. Ubiquitination and selective autophagy. Cell Death Differ, 2012, doi: 10.1038/ cdd.2012.72.[16] Zencheck WD, Xiao H, Weiss LM. Lysine post-translational modifications and the cytoskeleton. Essays Biochem, 2012, 52(1): 135-145.[17] Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics, 2011, 10(10): M111. 013284.[18] Chernorudskiy AL, Garcia A, Eremin EV, Shorina AS, Kondratieva EV, Gainullin MR. UbiProt: a database of ubiquitylated proteins. BMC Bioinformatics, 2007, 8: 126.[19] Du YP, Xu NF, Lu M, Li TT. hUbiquitome: a database of experimentally verified ubiquitination cascades in humans. Database (Oxford), 2011, 2011: bar055.[20] Lee H, Yi GS, Park JC. E3Miner: a text mining tool for ubiquitin-protein ligases. Nucleic Acids Res, 2008, 36(S2): W416-W422.[21] Han Y, Lee H, Park JC, Yi GS. E3Net: a system for ex-ploring E3-mediated regulatory networks of cellular func-tions. Mol Cell Proteomics, 2012, 11(4): O111. 014076.[22] Venancio TM, Balaji S, Iyer LM, Aravind L. Reconstruct-ing the ubiquitin network: cross-talk with other systems and identification of novel functions. Genome Biol, 2009, 10(3): R33.[23] Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol, 2006, 22: 159-180.[24] Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta, 2004, 1695(1-3): 55-72.[25] Palancade B, Doye V. Sumoylating and desumoylating enzymes at nuclear pores: underpinning their unexpected duties? Trends Cell Biol, 2008, 18(4): 174-183.[26] Seeler JS, Dejean A. Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol, 2003, 4(9): 690-699.[27] Wilson VG, Heaton PR. Ubiquitin proteolytic system: fo-cus on SUMO. Expert Rev Proteomics, 2008, 5(1): 121-135.[28] Ohsumi Y. Molecular mechanism of autophagy in yeast, Saccharomyces cerevisiae. Philos Trans R Soc Lond B Biol Sci, 1999, 354(1389): 1577-1580.[29] Hochstrasser M. Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol, 2000, 2(8): E153-E157.[30] Iyer LM, Burroughs AM, Aravind L. The prokaryotic an-tecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like β-grasp domains. Genome Biol, 2006, 7(7): R60.[31] Iyer LM, Koonin EV, Aravind L. Novel predicted pepti-dases with a potential role in the ubiquitin signaling path-way. Cell Cycle, 2004, 3(11): 1440-1450.[32] Balaji S, Babu MM, Iyer LM, Luscombe NM, Aravind L. Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. J Mol Biol, 2006, 360(1): 213-227.[33] Luscombe NM, Babu MM, Yu HY, Snyder M, Teichmann SA, Gerstein M. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 2004, 431(7006): 308- 312.[34] Yu HY, Braun P, Yildirim MA, Lemmens I, Venkatesan K, Sahalie J, Hirozane-Kishikawa T, Gebreab F, Li N, Si-monis N, Hao T, Rual JF, Dricot A, Vazquez A, Murray RR, Simon C, Tardivo L, Tam S, Svrzikapa N, Fan CY, de Smet AS, Motyl A, Hudson ME, Park J, Xin XF, Cusick ME, Moore T, Boone C, Snyder M, Roth FP, Barabási AL, Tavernier J, Hill DE, Vidal M. High-quality binary protein interaction map of the yeast interactome network. Science, 2008, 322(5898): 104-110.[35] van Wijk SJ, de Vries SJ, Kemmeren P, Huang A, Boelens R, Bonvin AMJJ, Timmers HTM. A comprehensive framework of E2-RING E3 interactions of the human ubiquitin-proteasome system. Mol Syst Biol, 2009, 5: 295.[36] Huang L, Kinnucan E, Wang GD, Beaudenon S, Howley PM, Huibregtse JM, Pavletich NP. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science, 1999, 286(5443): 1321-1326.[37] Schulman BA, Carrano AC, Jeffrey PD, Bowen Z, Kinnu-can ER, Finnin MS, Elledge SJ, Harper JW, Pagano M, Pavletich NP. Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature, 2000, 408(6810): 381-386.[38] Zheng N, Wang P, Jeffrey PD, Pavletich NP. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiq-uitin-protein ligases. Cell, 2000, 102(4): 533-539.[39] Christensen DE, Brzovic PS, Klevit RE. E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nat Struct Mol Biol, 2007, 14(10): 941-948.[40] Poyurovsky MV, Priest C, Kentsis A, Borden KL, Pan ZQ, Pavletich N, Prives C. The Mdm2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity. EMBO J, 2007, 26(1): 90-101.[41] Xu Z, Kohli E, Devlin KI, Bold M, Nix JC, Misra S. In-teractions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes. BMC Struct Biol, 2008, 8: 26.[42] Ardley HC, Robinson PA. E3 ubiquitin ligases. Essays Biochem, 2005, 41: 15-30.[43] Lorick KL, Jensen JP, Fang SY, Ong AM, Hatakeyama S, Weissman AM. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA, 1999, 96 (20): 11364-11369.[44] Winkler GS, Albert TK, Dominguez C, Legtenberg YIA, Boelens R, Timmers HTM. An altered- specificity ubiq-uitin-conjugating enzyme/ubiquitin-protein ligase pair. J Mol Biol, 2004, 337(1): 157-165.[45] Tomlinson E, Palaniyappan N, Tooth D, Layfield R. Methods for the purification of ubiquitinated proteins. Proteomics, 2007, 7(7): 1016-1022.[46] Denis NJ, Vasilescu J, Lambert JP, Smith JC, Figeys D. Tryptic digestion of ubiquitin standards reveals an im-proved strategy for identifying ubiquitinated proteins by mass spectrometry. Proteomics, 2007, 7(6): 868-874.[47] Hitchcock AL, Auld K, Gygi SP, Silver PA. A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery. Proc Natl Acad Sci USA, 2003, 100(22): 12735-12740.[48] Jeon HB, Choi ES, Yoon JH, Hwang JH, Chang JW, Lee EK, Choi HW, Park ZY, Yoo YJ. A proteomics approach to identify the ubiquitinated proteins in mouse heart. Bio-chem Biophys Res Commun, 2007, 357(3): 731-736.[49] Kirkpatrick DS, Weldon SF, Tsaprailis G, Liebler DC, Gandolfi AJ. Proteomic identification of ubiquitinated proteins from human cells expressing His-tagged ubiquitin. Proteomics, 2005, 5 (8): 2104-2111.[50] Matsumoto M, Hatakeyama S, Oyamada K, Oda Y, Ni-shimura T, Nakayama KI. Large-scale analysis of the hu-man ubiquitin-related proteome. Proteomics, 2005, 5(16): 4145-4151.[51] Peng JM, Schwartz D, Elias JE, Thoreen CC, Cheng DM, Marsischky G, Roelofs J, Finley D, Gygi SP. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol, 2003, 21 (8): 921-926.[52] Hagai T, Tóth-Petróczy Á, Azia A, Levy Y. The origins and evolution of ubiquitination sites. Mol Biosyst, 2012, 8(7): 1865-1877.[53] Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA. Methods for quantifi-cation of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol Cell Proteomics, 2012, 11(5): 148-159.[54] Denison C, Kirkpatrick DS, Gygi SP. Proteomic insights into ubiquitin and ubiquitin-like proteins. Curr Opin Chem Biol, 2005, 9(1): 69-75.[55] Chen Z, Chen YZ, Wang XF, Wang C, Yan RX, Zhang ZD. Prediction of ubiquitination sites by using the composition of k-spaced amino acid pairs. PLoS One, 2011, 6(7): e22930.[56] Radivojac P, Vacic V, Haynes C, Cocklin RR, Mohan A, Heyen JW, Goebl MG, Iakoucheva LM. Identification, analysis, and prediction of protein ubiquitination sites. Proteins, 2010, 78 (2): 365-380.[57] Cai YD, Huang T, Hu LL, Shi XH, Xie L, Li YX. Predic-tion of lysine ubiquitination with mRMR feature selection and analysis. Amino Acids, 2012, 42(4): 1387-1395.[58] Zhao XW, Li XT, Ma ZQ, Yin MH. Prediction of lysine ubiquitylation with ensemble classifier and feature selec-tion. Int J Mol Sci, 2011, 12(12): 8347-8361.[59] Feng KY, Huang T, Feng KR, Liu XJ. Using WPNNA classifier in ubiquitination site prediction based on hybrid features. Protein Pept Lett, 2012.[60] Tung CW, Ho SY. Computational identification of ubiq-uitylation sites from protein sequences. BMC Bioin-formatics, 2008, 9: 310.[61] Plewczynski D, Tkacz A, Wyrwicz LS, Rychlewski L. AutoMotif server: prediction of single residue post-trans-lational modifications in proteins. Bioinformatics, 2005, 21(10): 2525- 2527.[62] Tung CW, Ho SY. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties. Bioinformatics, 2007, 23(8): 942-949.[63] Xue Y, Chen H, Jin CJ, Sun ZR, Yao XB. NBA-Palm: pre-diction of palmitoylation site implemented in Naïve Bayes algorithm. BMC Bioinformatics, 2006, 7: 458.[64] Jones DT. Improving the accuracy of transmembrane pro-tein topology prediction using evolutionary information. Bioinformatics, 2007, 23(5): 538-544.[65] Kaur H, Raghava GPS. A neural network method for pre-diction of β-turn types in proteins using evolutionary in-formation. Bioinformatics, 2004, 20(16): 2751-2758.[66] Huang WL, Tung CW, Huang HL, Hwang SF, Ho SY. ProLoc: Prediction of protein subnuclear localization us-ing SVM with automatic selection from physicochemical composition features. Biosystems, 2007, 90(2): 573-581.[67] Teng S, Luo H, Wang L. Predicting protein sumoylation sites from sequence features. Amino Acids, 2012, 43(1): 447-455.[68] Kim W, Bennett EJ, Huttlin EL, Guo AL, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP. Systematic and quantitative assessment of the ubiq-uitin-modified proteome. Mol Cell, 2011, 44(2): 325-340. |