[1] Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol, 2006, 57(1): 19–53.<\p>
[2] Chen XM. Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol, 2009, 25(1): 21–44.<\p>
[3] Shukla LI, Chinnusamy V, Sunkar R. The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta, 2008, 1779(11): 743–748.<\p>
[4] Ruiz-Ferrer V, Voinnet O. Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol, 2009, 60(1): 485–510.<\p>
[5] Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313(5793): 1596–1604.<\p>
[6] Yang XH, Kalluri UC, DiFazio SP, Wullschleger SD, Tschaplinski TJ, Cheng ZM, Tuskan GA. Poplar genomics: state of the science. Crit Rev Plant Sci, 2009, 28(5): 285– 308.<\p>
[7] Taylor G. Populus: Arabidopsis for forestry. Do we need a model tree? Ann Bot, 2002, 90(6): 681–689.<\p>
[8] Jansson S, Douglas CJ. Populus: A model system for plant biology. Annu Rev Plant Biol, 2007, 58(1): 435–458.<\p>
[9] Lu SF, Sun YH, Chiang VL. Stress-responsive microRNAs in Populus. Plant J, 2008, 55(1): 131–151.<\p>
[10] Lu SF, Sun YH, Shi R, Clark C, Li L, Chiang VL. Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell, 2005, 17(8): 2186–2203.<\p>
[11] Puzey JR, Karger A, Axtell M, Kramer EM. Deep annotation of Populus trichocarpa microRNAs from diverse tissue sets. PLoS ONE, 2012, 7(3): e33034.<\p>
[12] 魏强, 梁永宏, 李广林. 植物miRNA的进化. 遗传, 2013, 25(3): 315–323.<\p>
[13] Li AL, Mao L. Evolution of plant microRNA gene families. Cell Res, 2007, 17(3): 212–218.<\p>
[14] Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res, 2011, 39(Suppl. 1): D152–D157.<\p>
[15] Maher C, Stein L, Ware D. Evolution of Arabidopsis microRNA families through duplication events. Genome Res, 2006, 16(4): 510–519.<\p>
[16] Zhang Z, Li J, Zhao X-Q, Wang J, Wong GK-S, Yu J. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Geno Prot Bioinfo, 2006, 4(4): 259–263.<\p>
[17] Yang Z, Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol, 2000, 17(1): 32–43.<\p>
[18] Blanc G, Wolfe KH. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell, 2004, 16(7): 1667–1678.<\p>
[19] Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290(5494): 1151–1155.<\p>
[20] Koch MA, Haubold B, Mitchell-Olds T. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol, 2000, 17(10): 1483– 1498.<\p>
[21] Li B, Qin Y, Duan H, Yin W, Xia X. Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot, 2011, 62(11): 3765–3779.<\p>
[22] Wan LC, Zhang HY, Lu SF, Zhang L, Qiu ZB, Zhao YY, Zeng QY, Lin JX. Transcriptome-wide identification and characterization of miRNAs from Pinus densata. BMC Genomics, 2012, 13(1): 132.<\p>
[23] 方炎明. 陆地植物新系统树之诠释与简评. 南京林业大学学报 (自然科学版), 2009, 33(4): 1–7.<\p>
[24] Sterck L, Rombauts S, Jansson S, Sterky F, Rouze P, Van de Peer Y. EST data suggest that poplar is an ancient polyploid. New Phytol, 2005, 167(1): 165–170.<\p>
[25] Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE, 2007, 2(2): e219<\p>
[26] Nozawa M, Miura S, Nei M. Origins and evolution of microRNA genes in plant species. Genome Biol Evol, 2012, 4(3): 230–239.<\p>
[27] De Bodt S, Maere S, van de Peer Y. Genome duplication and the origin of angiosperms. Trends Ecol Evol, 2005, 20(11): 591–597.<\p>
[28] Jiang WK, Liu YL, Xia EH, Gao LZ. Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants. Plant Physiol, 2013, 161(4): 1844–1861.<\p>
[29] Combier J P, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernié T, Ott T, Gamas P, Crespi M, Niebel A. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev, 2006, 20(22): 3084–3088.<\p>
[30] Li WX, Oono Y, Zhu JH, He XJ, Wu JM, Iida K, Lu XY, Cui XP, Jin HL, Zhu JK. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell, 2008, 20(8): 2238–2251.<\p>
[31] Zhao BT, Ge LF, Liang RQ, Li W, Ruan KC, Lin HX, Jin YX. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol, 2009, 10(1): 29.<\p>
[32] Qin YR, Duan ZX, Xia XL, Yin WL. Expression profiles of precursor and mature microRNAs under dehydration and high salinity shock in Populus euphratica. Plant Cell Rep, 2011, 30(10): 1893–1907.<\p> |