遗传 ›› 2016, Vol. 38 ›› Issue (11): 957-970.doi: 10.16288/j.yczz.16-102
• 综述 • 下一篇
浦懋懋, 姚俊, 曹新
收稿日期:
2016-03-24
修回日期:
2016-07-28
出版日期:
2016-11-20
发布日期:
2016-08-04
通讯作者:
曹新,博士,教授,研究方向:分子遗传学。E-mail: caoxin@njmu.edu.cn
作者简介:
浦懋懋,本科,专业方向:生物技术。E-mail: 2206824909@qq.com
Maomao Pu, Jun Yao, Xin Cao
Received:
2016-03-24
Revised:
2016-07-28
Online:
2016-11-20
Published:
2016-08-04
摘要: 大脑皮层是人类最高级的神经中枢,控制着人类区别于其他生物的认知能力,其结构与功能的高度复杂性起源于人类特有的遗传变异。应用基因组学技术,大脑皮层发育和进化的分子机制已经被逐步揭示。本文概述了基因组学技术如何运用于研究人类特有的遗传变异对大脑皮层发育与进化的影响,涉及采取基因组学方法研究人类和黑猩猩等其他哺乳类动物大脑皮层的基因表达差异以及重要的非编码调控序列—人类加速进化区(Human accelerated regions, HARs)在大脑发育过程中扮演的角色,并讨论了未来人类特有遗传变异在神经生物学领域的研究趋势。
浦懋懋, 姚俊, 曹新. 基因组学:揭秘人类特有遗传变异对大脑皮层进化与发育的影响[J]. 遗传, 2016, 38(11): 957-970.
Maomao Pu, Jun Yao, Xin Cao. Genomics: disclose the influence of human specific genetic variation on the evolution and development of cerebral cortex[J]. Hereditas(Beijing), 2016, 38(11): 957-970.
[1] Herculano-Houzel S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc Natl Acad Sci USA , 2012, 109(Suppl. 1): 10661-10668. [2] Geschwind DH, Rakic P. Cortical evolution: judge the brain by its cover. Neuron , 2013, 80(3): 633-647. [3] Lui JH, Hansen DV, Kriegstein AR. Development and evolution of the human neocortex. Cell , 2011, 146(1): 18-36. [4] Rakic P. Specification of cerebral cortical areas. Science , 1988, 241(4862): 170-176. [5] Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C, Green RD, Dekker J. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res , 2006, 16(10): 1299-1309. [6] Florio M, Huttner WB. Neural progenitors, neurogenesis and the evolution of the neocortex. Development , 2014, 141(11): 2182-2194. [7] Kowalczyk T, Pontious A, Englund C, Daza RA, Bedogni F, Hodge R, Attardo A, Bell C, Huttner WB, Hevner RF. Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb Cortex , 2009, 19(10): 2439-2450. [8] Gu J, Chen XP. Length of cell cycle in neural development. Hereditas ( Beijing ), 2011, 33(11): 1185-1190. 顾娟, 陈晓萍. 神经发育中的细胞周期时程. 遗传, 2011, 33(11): 1185-1190. [9] Hansen DV, Lui JH, Parker PRL, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature , 2010, 464(7288): 554-561. [10] Betizeau M, Cortay V, Patti D, Pfister S, Gautier E, Bellemin-Ménard A, Afanassieff M, Huissoud C, Douglas RJ, Kennedy H, Dehay C. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron , 2013, 80(2): 442-457. [11] Fietz SA, Kelava I, Vogt J, Wilsch-Bräuninger M, Stenzel D, Fish JL, Corbeil D, Riehn A, Distler W, Nitsch R, Huttner WB. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci , 2010, 13(6): 690-699. [12] Reillo I, de Juan Romero C, García-Cabezas MÁ, Borrell V. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex , 2011, 21(7): 1674-1694. [13] Johnson MB, Wang PP, Atabay KD, Murphy EA, Doan RN, Hecht JL, Walsh CA. Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex. Nat Neurosci , 2015, 18(5): 637-646. [14] Thomsen ER, Mich JK, Yao ZZ, Hodge RD, Doyle AM, Jang SM, Shehata SI, Nelson AM, Shapovalova NV, Levi BP, Ramanathan S. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat Methods , 2016, 13(1): 87-93. [15] Calegari F, Haubensak W, Haffner C, Huttner WB. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J Neurosci , 2005, 25(28): 6533-6538. [16] Arai Y, Pulvers JN, Haffner C, Schilling B, Nüsslein I, Calegari F, Huttner WB. Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nat Commun , 2011, 2: 154. [17] Kornack DR, Rakic P. Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc Natl Acad Sci USA , 1998, 95(3): 1242-1246. [18] Calegari F, Huttner WB. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J Cell Sci , 2003, 116(24): 4947-4955. [19] Caviness VS Jr, Takahashi T, Nowakowski RS. Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci , 1995, 18(9): 379-383. [20] Cheng Z, Ventura M, She XW, Khaitovich P, Graves T, Osoegawa K, Church D, DeJong P, Wilson RK, Pääbo S, Rocchi M, Eichler EE. A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature , 2005, 437(7055): 88-93. [21] Sherwood CC, Subiaul F, Zawidzki TW. A natural history of the human mind: tracing evolutionary changes in brain and cognition. J Anat , 2008, 212(4): 426-454. [22] Sikela JM. The jewels of our genome: the search for the genomic changes underlying the evolutionarily unique capacities of the human brain. PLoS Genet , 2006, 2(5): e80. [23] Carroll SB. Genetics and the making of Homo sapiens. Nature , 2003, 422(6934): 849-857. [24] Crick F, Koch C. A framework for consciousness. Nat Neurosci , 2003, 6(2): 119-126. [25] Eichler EE. Segmental duplications: what's missing, misassigned, and misassembled-and should we care? Genome Res , 2001, 11(5): 653-656. [26] Cardoso SD, Teles MC, Oliveira RF. Neurogenomic mechanisms of social plasticity. J Exp Biol , 2015, 218(1): 140-149. [27] Ellis BJ, Boyce WT, Belsky J, Bakermans-Kranenburg MJ, van Ijzendoorn MH. Differential susceptibility to the environment: an evolutionary-neurodevelopmental theory. Dev Psychopathol , 2011, 23(1): 7-28. [28] Fortna A, Kim Y, MacLaren E, Marshall K, Hahn G, Meltesen L, Brenton M, Hink R, Burgers S, Hernandez- Boussard T, Karimpour-Fard A, Glueck D, McGavran L, Berry R, Pollack J, Sikela JM. Lineage-specific gene duplication and loss in human and great ape evolution. PLoS Biol , 2004, 2(7): e207. [29] Ramakers GJ. Rho proteins and the cellular mechanisms of mental retardation. Am J Med Genet , 2000, 94(5): 367- 371. [30] Billuart P, Bienvenu T, Ronce N, des Portes V, Vinet MC, Zemni R, Roest Crollius H, Carrié A, Fauchereau F, Cherry M, Briault S, Hamel B, Fryns JP, Beldjord C, Kahn A, Moraine C, Chelly J. Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature , 1998, 392(6679): 923-926. [31] Tasic B, Hippenmeyer S, Wang C, Gamboa M, Zong H, Chen-Tsai Y, Luo LQ. Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc Natl Acad Sci USA , 2011, 108(19): 7902-7907. [32] Horak CE, Snyder M. ChIP-chip: a genomic approach for identifying transcription factor binding sites. Methods Enzymol , 2002, 350: 469-483. [33] Furey TS. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet , 2012, 13(12): 840-852. [34] Zentner GE, Henikoff S. High-resolution digital profiling of the epigenome. Nat Rev Genet , 2014, 15(12): 814-827. [35] Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science , 2002, 295(5558): 1306-1311. [36] Miele A, Dekker J. Mapping cis - and trans - chromatin interaction networks using chromosome conformation capture (3C). In: Hancock R, ed. The Nucleus. Totowa, NJ: Humana Press, 2008: 105-121. [37] Arner E, Daub CO, Vitting-Seerup K, Andersson R, Lilje B, Drabløs F, Lennartsson A, Rönnerblad M, Hrydziuszko O, Vitezic M, Freeman TC, Alhendi AMN, Arner P, Axton R, Baillie JK, Beckhouse A, Bodega B, Briggs J, Brombacher F, Davis M, Detmar M, Ehrlund A, Endoh M, Eslami A, Fagiolini M, Fairbairn L, Faulkner GJ, Ferrai C, Fisher ME, Forrester L, Goldowitz D, Guler R, Ha T, Hara M, Herlyn M, Ikawa T, Kai C, Kawamoto H, Khachigian LM, Klinken SP, Kojima S, Koseki H, Klein S, Mejhert N, Miyaguchi K, Mizuno Y, Morimoto M, Morris KJ, Mummery C, Nakachi Y, Ogishima S, Okada-Hatakeyama M, Okazaki Y, Orlando V, Ovchinnikov D, Passier R, Patrikakis M, Pombo A, Qin XY, Roy S, Sato H, Savvi S, Saxena A, Schwegmann A, Sugiyama D, Swoboda R, Tanaka H, Tomoiu A, Winteringham LN, Wolvetang E, Yanagi-Mizuochi C, Yoneda M, Zabierowski S, Zhang P, Abugessaisa I, Bertin N, Diehl AD, Fukuda S, Furuno M, Harshbarger J, Hasegawa A, Hori F, Ishikawa-Kato S, Ishizu Y, Itoh M, Kawashima T, Kojima M, Kondo N, Lizio M, Meehan TF, Mungall CJ, Murata M, Nishiyori-Sueki H, Sahin S, Nagao-Sato S, Severin J, de Hoon MJ, Kawai J, Kasukawa T, Lassmann T, Suzuki H, Kawaji H, Summers KM, Wells C, Hume DA, Forrest AR, Sandelin A, Carninci P, Hayashizaki Y. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science , 2015, 347(6225): 1010-1014. [38] Yamanaka T, Tosaki A, Kurosawa M, Shimogori T, Hattori N, Nukina N. Genome-wide analyses in neuronal cells reveal that upstream transcription factors regulate lysosomal gene expression. FEBS J , 2016, 283(6): 1077-1087. [39] Perdomo-Sabogal A, Nowick K, Piccini I, Sudbrak R, Lehrach H, Yaspo ML, Warnatz HJ, Querfurth R. Human lineage-specific transcriptional regulation through GA-binding protein transcription factor alpha (GABPa). Mol Biol Evol , 2016, 33(5): 1231-1244. [40] Hagège H, Klous P, Braem C, Splinter E, Dekker J, Cathala G, de Laat W, Forné T. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc , 2007, 2(7): 1722-1733. [41] Boyd JL, Skove SL, Rouanet JP, Pilaz LJ, Bepler T, Gordân R, Wray GA, Silver DL. Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex. Curr Biol , 2015, 25(6): 772-779. [42] Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, Marques S, Munguba H, He LQ, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science , 2015, 347(6226): 1138-1142. [43] Konopka G, Friedrich T, Davis-Turak J, Winden K, Oldham MC, Gao FY, Chen L, Wang GZ, Luo R, Preuss TM, Geschwind DH. Human-specific transcriptional networks in the brain. Neuron , 2012, 75(4): 601-617. [44] Bernard A, Lubbers LS, Tanis KQ, Luo R, Podtelezhnikov AA, Finney EM, McWhorter MME, Serikawa K, Lemon T, Morgan R, Copeland C, Smith K, Cullen V, Davis-Turak J, Lee CK, Sunkin SM, Loboda AP, Levine DM, Stone DJ, Hawrylycz MJ, Roberts CJ, Jones AR, Geschwind DH, Lein ES. Transcriptional architecture of the primate neocortex. Neuron , 2012, 73(6): 1083-1099. [45] Fietz SA, Lachmann R, Brandl H, Kircher M, Samusik N, Schröder R, Lakshmanaperumal N, Henry I, Vogt J, Riehn A, Distler W, Nitsch R, Enard W, Pääbo S, Huttner WB. Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal. Proc Natl Acad Sci USA , 2012, 109(29): 11836-11841. [46] Pletikos M, Sousa AMM, Sedmak G, Meyer KA, Zhu Y, Cheng F, Li MF, Kawasawa YI, Šestan N. Temporal specification and bilaterality of human neocortical topographic gene expression. Neuron , 2014, 81(2): 321-332. [47] Lui JH, Nowakowski TJ, Pollen AA, Javaherian A, Kriegstein AR, Oldham MC. Radial glia require PDGFD- PDGFRβ signalling in human but not mouse neocortex. Nature , 2014, 515(7526): 264-268. [48] Bergsten E, Uutela M, Li XR, Pietras K, Östman A, Heldin CH, Alitalo K, Eriksson U. PDGF-D is a specific, protease-activated ligand for the PDGF β-receptor. Nat Cell Biol , 2001, 3(5): 512-516. [49] Lu ZX, Huang Q, Su B. Functional characterization of the human-specific (type II) form of kallikrein 8, a gene involved in learning and memory. Cell Res , 2009, 19(2): 259-267. [50] Shi L, Lin Q, Su B. Human-specific hypomethylation of CENPJ , a key brain size regulator. Mol Biol Evol , 2014, 31(3): 594-604. [51] Wu XM, Xiao HS. miRNAs modulate the drug response of tumor cells. Sci China Ser C : Life Sci , 2009, 52(9): 797-801. 武雪梅, 肖华胜. 人类基因组结构变异检测研究进展. 中国科学 C辑: 生命科学, 2009, 39(03): 237-244. [52] Lai CSL, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature , 2001, 413(6855): 519-523. [53] Zhang JZ, Webb DM, Podlaha O. Accelerated protein evolution and origins of human-specific features: Foxp2 as an example. Genetics , 2002, 162(4): 1825-1835. [54] Konopka G, Bomar JM, Winden K, Coppola G, Jonsson ZO, Gao FY, Peng S, Preuss TM, Wohlschlegel JA, Geschwind DH. Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature , 2009, 462(7270): 213-217. [55] Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A. A human-specific gene in microglia. Science , 2005, 309(5741): 1693. [56] Bacon C, Endris V, Rappold G. Dynamic expression of the Slit-Robo GTPase activating protein genes during development of the murine nervous system. J Comp Neurol , 2009, 513(2): 224-236. [57] Itoh T, Erdmann KS, Roux A, Habermann B, Werner H, De Camilli P. Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev Cell , 2005, 9(6): 791-804. [58] Guerrier S, Coutinho-Budd J, Sassa T, Gresset A, Jordan NV, Chen K, Jin WL, Frost A, Polleux F. The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis. Cell , 2009, 138(5): 990-1004. [59] Charrier C, Joshi K, Coutinho-Budd J, Kim JE, Lambert N, de Marchena J, Jin WL, Vanderhaeghen P, Ghosh A, Sassa T, Polleux F. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell , 2012, 149(4): 923-935. [60] Florio M, Albert M, Taverna E, Namba T, Brandl H, Lewitus E, Haffner C, Sykes A, Wong FK, Peters J, Guhr E, Klemroth S, Prüfer K, Kelso J, Naumann R, Nüsslein I, Dahl A, Lachmann R, Pääbo S, Huttner WB. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science , 2015, 347(6229): 1465-1470. [61] Amadio JP, Walsh CA. Brain evolution and uniqueness in the human genome. Cell , 2006, 126(6): 1033-1035. [62] Kouprina N, Pavlicek A, Mochida GH, Solomon G, Gersch W, Yoon YH, Collura R, Ruvolo M, Barrett JC, Woods CG, Walsh CA, Jurka J, Larionov V. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion. PLoS Biol , 2004, 2(5): e126. [63] Evans PD, Anderson JR, Vallender EJ, Choi SS, Lahn BT. Reconstructing the evolutionary history of microcephalin , a gene controlling human brain size. Hum Mol Genet , 2004, 13(11): 1139-1145. [64] Somel M, Liu XL, Khaitovich P. Human brain evolution: transcripts, metabolites and their regulators. Nat Rev Neurosci , 2013, 14(2): 112-127. [65] Oksenberg N, Stevison L, Wall JD, Ahituv N. Function and regulation of AUTS2, a gene implicated in autism and human evolution. PLoS Genet , 2013, 9(1): e1003221. [66] Kamm GB, López-Leal R, Lorenzo JR, Franchini LF. A fast-evolving human NPAS3 enhancer gained reporter expression in the developing forebrain of transgenic mice. Philos Trans R Soc Lond B Biol Sci , 2013, 368(1632): 20130019. [67] Carroll SB. Evolution at two levels: on genes and form. PLoS Biol , 2005, 3(7): e245. [68] Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell , 2008, 134(1): 25-36. [69] McLean CY, Reno PL, Pollen AA, Bassan AI, Capellini TD, Guenther C, Indjeian VB, Lim X, Menke DB, Schaar BT, Wenger AM, Bejerano G, Kingsley DM. Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature , 2011, 471(7337): 216-219. [70] Bird CP, Stranger BE, Liu M, Thomas DJ, Ingle CE, Beazley C, Miller W, Hurles ME, Dermitzakis ET. Fast-evolving noncoding sequences in the human genome. Genome Biol , 2007, 8(6): R118. [71] Burbano HA, Green RE, Maricic T, Lalueza-Fox C, de la Rasilla M, Rosas A, Kelso J, Pollard KS, Lachmann M, Pääbo S. Analysis of human accelerated DNA regions using archaic hominin genomes. PLoS One , 2012, 7(3): e32877. [72] Hubisz MJ, Pollard KS. Exploring the genesis and functions of Human Accelerated Regions sheds light on their role in human evolution. Curr Opin Genet Dev , 2014, 29: 15-21. [73] Kamm GB, Pisciottano F, Kliger R, Franchini LF. The developmental brain gene NPAS3 contains the largest number of accelerated regulatory sequences in the human genome. Mol Biol Evol , 2013, 30(5): 1088-1102. [74] Capra JA, Erwin GD, McKinsey G, Rubenstein JLR, Pollard KS. Many human accelerated regions are developmental enhancers. Philos Trans R Soc Lond B Biol Sci , 2013, 368(1632): 20130025. [75] Pollard KS, Salama SR, Lambert N, Lambot MA, Coppens S, Pedersen JS, Katzman S, King B, Onodera C, Siepel A, Kern AD, Dehay C, Igel H, Ares M Jr, Vanderhaeghen P, Haussler D. An RNA gene expressed during cortical development evolved rapidly in humans. Nature , 2006, 443(7108): 167-172. [76] Prabhakar S, Visel A, Akiyama JA, Shoukry M, Lewis KD, Holt A, Plajzer-Frick I, Morrison H, FitzPatrick DR, Afzal V, Pennacchio LA, Rubin EM, Noonan JP. Human-specific gain of function in a developmental enhancer. Science , 2008, 321(5894): 1346-1350. [77] Oksenberg N, Ahituv N. The role of AUTS2 in neurodevelopment and human evolution. Trends Genet , 2013, 29(10): 600-608. [78] Erbel-Sieler C, Dudley C, Zhou YD, Wu XL, Estill SJ, Han T, Diaz-Arrastia R, Brunskill EW, Potter SS, McKnight SL. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. Proc Natl Acad Sci USA , 2004, 101(37): 13648- 13653. [79] Brunskill EW, Ehrman LA, Williams MT, Klanke J, Hammer D, Schaefer TL, Sah R, Dorn GW II, Potter SS, Vorhees CV. Abnormal neurodevelopment, neurosignaling and behaviour in Npas3-deficient mice. Eur J Neurosci , 2005, 22(6): 1265-1276. [80] Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L, Szafer A, Ebbert A, Riley ZL, Royall JJ, Aiona K, Arnold JM, Bennet C, Bertagnolli D, Brouner K, Butler S, Caldejon S, Carey A, Cuhaciyan C, Dalley RA, Dee N, Dolbeare TA, Facer AC, Feng D, Fliss TP, Gee G, Goldy J, Gourley L, Gregor BW, Gu GY, Howard RE, Jochim JM, Kuan CL, Lau C, Lee CK, Lee F, Lemon TA, Lesnar P, McMurray B, Mastan N, Mosqueda N, Naluai-Cecchini T, Ngo NK, Nyhus J, Oldre A, Olson E, Parente J, Parker PD, Parry SE, Stevens A, Pletikos M, Reding M, Roll K, Sandman D, Sarreal M, Shapouri S, Shapovalova NV, Shen EH, Sjoquist N, Slaughterbeck CR, Smith M, Sodt AJ, Williams D, Zöllei L, Fischl B, Gerstein MB, Geschwind DH, Glass IA, Hawrylycz MJ, Hevner RF, Huang H, Jones AR, Knowles JA, Levitt P, Phillips JW, Šestan N, Wohnoutka P, Dang C, Bernard A, Hohmann JG, Lein ES. Transcriptional landscape of the prenatal human brain. Nature , 2014, 508(7495): 199-206. [81] Melnikov A, Murugan A, Zhang XL, Tesileanu T, Wang L, Rogov P, Feizi S, Gnirke A, Callan CG Jr, Kinney JB, Kellis M, Lander ES, Mikkelsen TS. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat Biotechnol , 2012, 30(3): 271-277. [82] Patwardhan RP, Hiatt JB, Witten DM, Kim MJ, Smith RP, May D, Lee C, Andrie JM, Lee SI, Cooper GM, Ahituv N, Pennacchio LA, Shendure J. Massively parallel functional dissection of mammalian enhancers in vivo . Nat Biotechnol , 2012, 30(3): 265-270. [83] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell , 2007, 131(5): 861-872. [84] Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell , 2012, 10(6): 678-684. [85] Prescott SL, Srinivasan R, Marchetto MC, Grishina I, Narvaiza I, Selleri L, Gage FH, Swigut T, Wysocka J. Enhancer divergence and cis -regulatory evolution in the human and chimp neural crest. Cell , 2015, 163(1): 68-83. [86] Franchini LF, Pollard KS. Can a few non-coding mutations make a human brain? Bioessays , 2015, 37(10): 1054-1061. [87] Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science , 2013, 339(6121): 819-823. [88] Wang S, Xu ZH. Progress in the study of molecular mechanisms of developmental cortex malformations. Chin J Cell Biol , 2011, 33(8): 837-846. 王硕, 许执恒. 大脑皮层发育畸形及分子遗传机理研究进展. 中国细胞生物学学报, 2011, 33(8): 837-846. |
[1] | 梁承志. 从作物基因组分析到整合组学知识库建设[J]. 遗传, 2019, 41(9): 875-882. |
[2] | 姜义圣,许执恒. 脑发育疾病及发病机制[J]. 遗传, 2019, 41(9): 801-815. |
[3] | 刘永鑫,秦媛,郭晓璇,白洋. 微生物组数据分析方法与应用[J]. 遗传, 2019, 41(9): 845-862. |
[4] | 史晓黎,何伊琳,凌宏清. 小麦A基因组测序与进化研究进展[J]. 遗传, 2019, 41(9): 836-844. |
[5] | 张秀泉,王建,熊符,吕伟标,周远青,杨少民,张玉婷,田小燕,连蔚,徐湘民. 染色体10q24.31片段重复导致先天性缺指/缺趾畸形的一个家系致病机理分析[J]. 遗传, 2019, 41(8): 716-724. |
[6] | 梁文权,侯豫,赵存友. 精神分裂症相关单核苷酸多态性调控microRNA功能研究进展[J]. 遗传, 2019, 41(8): 677-685. |
[7] | 何俊,Fernando B. Lopes,吴晓林. 动物基因组选配方法与应用[J]. 遗传, 2019, 41(6): 486-493. |
[8] | 李芳,黄青芸,刘斯佳,郭忠信,熊欣欣,桂林,束会娟,黄绍明,谭国鹤,刘媛媛. Bmal1对小鼠胚胎期皮层神经元放射状迁移和轴突投射的影响[J]. 遗传, 2019, 41(6): 524-533. |
[9] | 王珏, 黄娟, 许蕊. 利用CRISPR/Cas9和piggyBac实现果蝇基因组无缝编辑[J]. 遗传, 2019, 41(5): 422-429. |
[10] | 刘刚,孙飞舟,朱芳贤,冯海永,韩旭. 连续性纯合片段在畜禽基因组研究中的应用[J]. 遗传, 2019, 41(4): 304-317. |
[11] | 赵志达,张莉. 基因组选择在绵羊育种中的应用[J]. 遗传, 2019, 41(4): 293-303. |
[12] | 于好强,孙福艾,冯文奇,路风中,李晚忱,付凤玲. 转录因子BES1/BZR1调控植物生长发育及抗逆性[J]. 遗传, 2019, 41(3): 206-214. |
[13] | 宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳. 基于Hi-C技术哺乳动物三维基因组研究进展[J]. 遗传, 2019, 41(3): 215-233. |
[14] | 杨鑫宇,贾振伟. 颗粒细胞EGF类因子信号通路在调控卵母细胞成熟和发育中的作用[J]. 遗传, 2019, 41(2): 137-145. |
[15] | 匡卫民, 于黎. 基因组时代线粒体基因组拼装策略及软件应用现状[J]. 遗传, 2019, 41(11): 979-993. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: