[1] Lippert TH, Ruoff HJ, Volm M. Intrinsic and acquired drug resistance in malignant tumors. The main reason for therapeutic failure. Arzneimittelforschung, 2008, 58(6): 261–264. <\p>
[2] O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. C-Myc-regulated microRNAs modulate E2F1 expres-sion. Nature, 2005, 435(7043): 839–843. <\p>
[3] Blower PE, Chung JH, Verducci JS, Lin S, Park JK, Dai Z, Liu CG, Schmittgen TD, Reinhold WC, Croce CM, Weinstein JN, Sadee W. MiRNAs modulate the chemosen-sitivity of tumor cells. Mol Cancer Ther, 2008, 7(1): 1–9. <\p>
[4] Zheng T, Wang J, Chen X, Liu L. Role of microRNA in anti-cancer drug resistance. Int J Cancer, 2010, 126(1): 2–10. <\p>
[5] Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol, 2009, 27(34): 5848–5856. <\p>
[6] Kozomara A, Griffiths-Jones S. miRBase: integrating mi-croRNA annotation and deep-sequencing data. Nucleic Acids Res, 2011, 39: 152–157. <\p>
[7] Lewis B P, Burge C B, Bartel V. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets. Cell, 2005, 120(1): 15–20. <\p>
[8] Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA. org resource: targets and expression. Nucleic Acids Res, 2008, 36: 149–153. <\p>
[9] Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM, Chien CH, Wu MC, Huang CY, Tsou AP, Huang HD. miRTarBase: a database curates experimentally validated microRNA-target inter-actions. Nucleic Acids Research, 2011, 39: 163–169. <\p>
[10] Fojo T. Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoterregions, epigenetic changes and microRNAs. Drug Resist Updat, 2007, 10(1–2): 59–67. <\p>
[11] Sun YM, Lin KY, Chen YQ. Diverse functions of miR-125 family in differentcell contexts. J Hematol Oncol, 2013, 6: 6. <\p>
[12] Xia HF, He TZ, Liu CM, Cui Y, Song PP, Jin XH, Ma X. MiR-125b expression affects the proliferation and apop-tosis of human glioma cells by targeting Bmf. Cell Physiol Biochem, 2009, 23(4–6): 347–358. <\p>
[13] Mizuno Y, Yagi K, Tokuzawa Y, Kanesaki-Yatsuka Y, Suda T, Katagiri T, Fukuda T, Maruyama M, Okuda A, Amemiya T, Kondoh Y, Tashiro H, Okazaki Y. miR- 125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem Biophys Res Commun, 2008, 368(2): 267–272. <\p>
[14] 胡斌, 吴爱国, 李学孝, 纪术峰, 王梦川, 吴凯, 邵国利. miR-125b-1 增强乳腺癌SKBR-3 细胞对紫杉醇的药物敏感性. 热带医学杂志, 2012, 12(7): 789–792. <\p>
[15] 智慧, 朱伟, 王同杉, 王建, 束永前, 刘平. miR-125b靶向抑制BCL2、MCL1表达对胃癌SGC7901/VCR细胞多药耐药性的影响. 南京医科大学学报, 2011, 6: 777–781. <\p>
[16] Kong F, Sun C, Wang Z, Han L, Weng D, Lu Y, Chen G. miR-125b confers resistance of ovarian cancer cells to cisplatin by targeting pro-apoptotic Bcl-2 antagonist killer 1(BAK1)expression. J Huazhong Univ Sci Technolog Med Sci, 2011, 31(4): 543–549. <\p>
[17] Shi L, Zhang J, Pan T, Zhou J, Gong W, Liu N, Fu Z, You Y. MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Res, 2010, 1312: 120–126. <\p>
[18] Duman BB, Sahin B, Acikalin A, Ergin M, Zorludemir S. PTEN, Akt, MAPK, p53 and p95 expression to predict trastuzumab resistance in HER2 positive breast cancer. J BUON, 2013, 18(1): 44–50. <\p>
[19] Pritchard AL, Hayward NK. Molecular pathways: mito-gen-activated protein kinase pathway mutations and drug resistance. Clin Cancer Res, 2013, 19(9): 2301– 2309. <\p>
[20] Paunovic V, Harnett MM. Mitogen-activated protein kinases as therapeutic targets for rheumatoid arthritis. Drugs, 2013, 73(2): 101–115. |