遗传 ›› 2015, Vol. 37 ›› Issue (6): 544-553.doi: 10.16288/j.yczz.14-392
张焕萍1, 2, 尹佟明2
收稿日期:
2014-11-13
修回日期:
2015-02-20
出版日期:
2015-06-20
发布日期:
2015-03-16
通讯作者:
尹佟明,博士,教授,博士生导师,研究方向:基因组学。E-mail: tmyin@njfu.edu.cn
作者简介:
张焕萍,博士,讲师,研究方向:基因组学。E-mail: nuaazhp@njfu.edu.cn
基金资助:
Huanping Zhang1, 2, Tongming Yin2
Received:
2014-11-13
Revised:
2015-02-20
Online:
2015-06-20
Published:
2015-03-16
摘要: 谱系特有基因(Lineage-specific genes,LSGs)是指在一个谱系中特有并与其他物种谱系所有基因没有明显序列相似性的基因,约为物种基因组全部基因数量的10%~20%,于1996年首次在完成全基因组测序的酵母基因组中大量发现。大规模测序技术的发展使谱系特有基因研究成为比较基因组学的研究热点,已在微生物、海洋低等生物、植物(如拟南芥、水稻、杨树)、昆虫及高等灵长类动物等多个物种或类群中展开,其生物功能对于阐明物种进化历程和生物适应性具有重要意义。文章介绍了谱系特有基因的研究背景和现状,从谱系特有基因获取、基因结构分析、进化起源、生物功能、表达特性分析等方面阐述谱系特有基因的研究进展,分析了存在的问题和后续研究方向,以期为相关研究提供参考。
张焕萍, 尹佟明. 谱系特有基因研究进展[J]. 遗传, 2015, 37(6): 544-553.
Huanping Zhang, Tongming Yin. Advances in lineage-specific genes[J]. HEREDITAS(Beijing), 2015, 37(6): 544-553.
[1] Tautz D, Domazet-Lošo T. The evolutionary origin of orphan genes. Nat Rev Genet , 2011, 12(10): 692-702. [2] Fischer D. Eisenberg D. Finding families for genomic ORFans. Bioinformatics , 1999, 15(9): 759-762. [3] Dujon B. The yeast genome project: what did we learn? Trends Genet , 1996, 12(7): 263-270. [4] Khalturin K, Hemmrich G, Fraune S, Augustin R, Bosch TCG. More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet , 2009, 25(9): 404-413. [5] Chen SD, Krinsky BH, Long MY. New genes as drivers of phenotypic evolution. Nat Rev Genet , 2013, 14(9): 645-660. [6] Zhang YE, Landback P, Vibranovski MD, Long MY. Accelerated recruitment of new brain development genes into the human genome. PLoS Biol , 2011, 9(10): e1001179. [7] Neme R, Tautz D. Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics , 2013, 14: 117. [8] Magadum S, Banerjee U, Murugan P, Gangapur D, Ravikesavan R. Gene duplication as a major force in evolution. J Genet , 2013, 92(1): 155-161. [9] Yang LD, Zou M, Fu BD, He SP. Genome-wide identification, characterization, and expression analysis of lineage-specific genes within zebrafish. BMC Genomics , 2013, 14: 65. [10] Yin YB, Fischer D. Identification and investigation of ORFans in the viral world. BMC Genomics , 2008, 9: 24. [11] Yin YB, Fischer D. On the origin of microbial ORFans: Quantifying the strength of the evidence for viral lateral transfer. BMC Evol Biol , 2006, 6: 63. [12] Wilson GA, Bertrand N, Patel Y, Hughes JB, Feil EJ, Field D. Orphans as taxonomically restricted and ecologically important genes. Microbiology , 2005, 151(8): 2499-2501. [13] Tay SK, Blythe J, Lipovich L. Global discovery of primate-specific genes in the human genome. Proc Natl Acad Sci USA , 2009, 106(29): 12019-12024. [14] Toll-Riera M, Bosch N, Bellora N, Castelo R, Armengol L, Estivill X, Albà MM. Origin of primate orphan genes: a comparative genomics approach. Mol Biol Evol , 2009, 26(3): 603-612. [15] Lindskog C, Kuhlwilm M, Davierwala A, Fu N, Hegde G, Uhlén M, Navani S, Pääbo S, Pontén F. Analysis of candidate genes for lineage-specific expression changes in humans and primates. J Proteome Res , 2014, 13(8): 3596-3606. [16] Zhang Q. Using pseudogene database to identify lineage-specific genes and pseudogenes in humans and chimpanzees. J Hered , 2014, 105(3): 436-443. [17] Johnson BR, Tsutsui ND. Taxonomically restricted genes are associated with the evolution of sociality in the honey bee. BMC Genomics , 2011, 12: 164. [18] Zhang GJ, Wang HS, Shi JJ, Wang XL, Zheng HK, Wong GKS, Clark T, Wang W, Wang J, Kang L. Identification and characterization of insect-specific proteins by genome data analysis. BMC Genomics , 2007, 8: 93. [19] Palmieri N, Kosiol C, Schlötterer C. The life cycle of Drosophila orphan genes. Elife , 2014, 3: e01311. [20] Rogers RL, Shao L, Sanjak JS, Andolfatto P, Thornton KR. Revised annotations, sex-biased expression, and lineage-specific genes in the Drosophila melanogaster group. G3 (Bethesda) , 2014, 4(12):2345-2351. [21] Lin HN, Moghe G, Ouyang S, Iezzoni A, Shiu SH, Gu X, Buell CR. Comparative analyses reveal distinct sets of lineage-specific genes within Arabidopsis thaliana . BMC Evol Biol , 2010, 10: 41. [22] Donoghue MT, Keshavaiah C, Swamidatta SH, Spillane C. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana . BMC Evol Biol , 2011, 11: 47. [23] Campbell MA, Zhu W, Jiang N, Lin HN, Ouyang S, Childs KL, Haas BJ, Hamilton JP, Buell CR. Identification and characterization of lineage-specific genes within the poaceae. Plant Physiol , 2007, 145(4): 1311-1322. [24] Lin WL, Cai B, Cheng ZM. Identification and characterization of lineage-specific genes in Populus trichocarpa . Plant Cell Tiss Org , 2014, 116(2): 217-225. [25] Yang XH, Jawdy S, Tschaplinski TJ, Tuskan GA. Genome-wide identification of lineage-specific genes in Arabidopsis , Oryza and Populus . Genomics , 2009, 93(5): 473-480. [26] Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJA, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C. InterPro: the integrative protein signature database. Nucleic Acids Res , 2009, 37(suppl.1): D211-D215. [27] Yan HW, Zhang W, Lin YX, Dong Q, Peng XJ, Jiang HY, Zhu SW, Cheng BJ. Different evolutionary patterns among intronless genes in maize genome. Biochem Biophys Res Commun , 2014, 449(1): 146-150. [28] Wissler L, Gadau J, Simola DF, Helmkampf M, Bornberg-Bauer E. Mechanisms and dynamics of orphan gene emergence in insect genomes. Genome Biol Evol , 2013, 5(2): 439-455. [29] Chothia C, Gough J. Genomic and structural aspects of protein evolution. Biochem J , 2009, 419(1): 15-28. [30] Carninci P. RNA dust: where are the genes? DNA Res , 2010, 17(2): 51-59. [31] Cai JJ, Woo PCY, Lau SKP, Smith DK, Yuen KY. Accelerated evolutionary rate may be responsible for the emergence of lineage-specific genes in ascomycota. J Mol Evol , 2006, 63(1): 1-11. [32] Wolf YI, Novichkov PS, Karev GP, Koonin EV, Lipman DJ. The universal distribution of evolutionary rates of genes and distinct characteristics of eukaryotic genes of different apparent ages. Proc Natl Acad Sci USA , 2009, 106(18): 7273-7280. [33] Kasuga T, Mannhaupt G, Glass NL. Relationship between phylogenetic distribution and genomic features in Neurospora crassa . PLoS One , 2009, 4(4): e5286. [34] Albà MM, Castresana J. Inverse relationship between evolutionary rate and age of mammalian genes. Mol Biol Evol , 2005, 22(3): 598-606. [35] Cai JJ, Petrov DA. Relaxed purifying selection and possibly high rate of adaptation in primate lineage-specific genes. Genome Biol Evol , 2010, 2: 393-409. [36] Gayà-Vidal M, Albà MM. Uncovering adaptive evolution in the human lineage. BMC Genomics , 2014, 15: 599. [37] Long MY, Van Kuren NW, Chen SD, Vibranovski MD. New gene evolution: little did we know. Annu Rev Genet , 2013, 47: 307-333. [38] Guo LH, Chen YN, Ye N, Dai XG, Yang WX, Yin TM. Differential retention and expansion of the ancestral genes associated with the paleopolyploidies in modern rosid plants, as revealed by analysis of the extensins super-gene family. BMC Genomics , 2014, 15: 612. [39] Hoffmann FG, Opazo JC, Storz JF. Rapid rates of lineage-specific gene duplication and deletion in the alpha-globin gene family. Mol Biol Evol , 2008, 25(3):591-602. [40] Kondrashov FA. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc Biol Sci , 2012, 279(1749): 5048-5057. [41] Guo WJ, Li P, Ling J, Ye SP. Significant comparative characteristics between orphan and nonorphan genes in the rice ( Oryza sativa L.) genome. Comp Funct Genomics , 2007: 21676. [42] Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev , 2010, 74(3): 417-433. [43] Dunning Hotopp JC. Horizontal gene transfer between bacteria and animals. Trends Genet , 2011, 27(4): 157-163. [44] Gao CH, Ren XD, Mason AS, Liu HL, Xiao ML, Li JN, Fu DH. Horizontal gene transfer in plants. Funct Integr Genomics , 2014, 14(1): 23-29. [45] Huang JL. Horizontal gene transfer in eukaryotes: The weak-link model. BioEssays , 2013, 35(10): 868-875. [46] 王洽, 乐霁培, 张体操, 黄锦岭, 孙航. 水平基因转移在生物进化中的作用. 科学通报, 2014, 59(21): 2055-2064. [47] Cooper ED. Horizontal gene transfer: accidental inheritance drives adaptation. Curr Biol , 2014, 24(12): R562-R564. [48] Cai J, Zhao RP, Jiang HF, Wang W. De novo origination of a new protein-coding gene in Saccharomyces cerevisiae . Genetics , 2008, 179(1): 487-496. [49] Sorek R. The birth of new exons: mechanisms and evolutionary consequences. RNA , 2007, 13(10): 1603-1608. [50] Light S, Basile W, Elofsson A. Orphans and new gene origination, a structural and evolutionary perspective. Curr Opin Struct Biol , 2014, 26: 73-83. [51] Wu DD, Zhang YP. Evolution and function of de novo originated genes. Mol Phylogenet Evol , 2013, 67(2): 541-545. [52] Li CY, Zhang Y, Wang ZB, Zhang Y, Cao CM, Zhang PW, Lu SJ, Li XM, Yu Q, Zheng XF, Du Q, Uhl GR, Liu QR, Wei LP. A human-specific De novo protein-coding gene associated with human brain functions. PLoS Comput Biol , 2010, 6(3): e1000734. [53] Carvunis AR, Rolland T, Wapinski I, Calderwood MA, Yildirim MA, Simonis N, Charloteaux B, Hidalgo CA, Barbette J, Santhanam B, Brar GA, Weissman JS, Regev A, Thierry-Mieg N, Cusick ME, Vidal M. Proto-genes and de novo gene birth. Nature , 2012, 487 (7407): 370-374. [54] Zhou Q, Zhang GJ, Zhang Y, Xu SY, Zhao RP, Zhan ZB, Li X, Ding Y, Yang S, Wang W. On the origin of new genes in Drosophila . Genome Res , 2008, 18(9): 1446-1455. [55] Ohno S. Birth of a unique enzyme from an alternative reading frame of the preexisted, internally repetitious coding sequence. Proc Natl Acad Sci USA . 1984, 81(8): 2421-2425. [56] Keese PK, Gibbs A. Origins of genes: "big bang" or continuous creation? Proc Natl Acad Sci USA , 1992, 89(20): 9489-9493. [57] Ekman D, Elofsson A. Identifying and quantifying orphan protein sequences in fungi. J Mol Biol , 2010, 396(2): 396-405. [58] Chung WY, Wadhawan S, Szklarczyk R, Pond SK, Nekrutenko A. A first look at ARFome: Dual-coding genes in mammalian genomes. PLoS Comput Biol , 2007, 3(5): e91. [59] Knowles DG, McLysaght A. Recent de novo origin of human protein-coding genes. Genome Res , 2009, 19(10): 1752-1759. [60] Sabath N, Wagner A, Karlin D. Evolution of viral proteins originated de novo by overprinting. Mol Biol Evol , 2012, 29(12): 3767-3780. [61] Lockton S, Gaut BS. The contribution of transposable elements to expressed coding sequence in Arabidopsis thaliana . J Mol Evol , 2009, 68(1): 80-89. [62] Böhne A, Brunet F, Galiana-Arnoux D, Schultheis C, Volff JN. Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Res , 2008, 16(1): 203-215. [63] Innan H, Kondrashov F. The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet , 2010, 11(2): 97-108. [64] Gibson TA, Goldberg DS. Questioning the ubiquity of neofunctionalization. PLoS Comput Biol , 2009, 5(1): e1000252. [65] Van Hoof A. Conserved functions of yeast genes support the duplication, degeneration and complementation model for gene duplication. Genetics , 2005, 171(4): 1455-1461. [66] Gillespie RG. Adaptive radiation: convergence and non-equilibrium. Curr Biol , 2013, 23(2): R71-R74. [67] Näsvall J, Sun L, Roth JR, Andersson DI. Real-time evolution of new genes by innovation, amplification, and divergence. Science , 2012, 338(6105): 384-387. [68] Deng C, Cheng CHC, Ye H, He XM, Chen LB. Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict. Proc Natl Acad Sci USA , 2010, 107(50): 21593-21598. [69] 孙红正, 葛颂. 重复基因的进化——回顾与进展. 植物学报, 2010, 45(1): 13-22. [70] Krylov DM, Wolf YI, Rogozin IB, Koonin EV. Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res , 2003, 13(10): 2229-2235. [71] Gabor Miklos GL, Rubin GM. The role of the genome project in determining gene function: insights from model organisms. Cell , 1996, 86(4): 521-529. [72] Kaessmann H. Origins, evolution, and phenotypic impact of new genes. Genome Res , 2010, 20(10): 1313-1326. [73] Long MY, Betrán E, Thornton K, Wang W. The origin of new genes: glimpses from the young and old. Nat Rev Genet , 2003, 4(11): 865-875. [74] Chen SD, Zhang YE, Long MY. New genes in Drosophila quickly become essential. Science , 2010, 330(6011): 1682-1685. [75] Ding Y, Zhao L, Yang S, Jiang Y, Chen Y, Zhao RP, Zhang Y, Zhang GJ, Dong Y, Yu HJ, Zhou Q, Wang W. A young Drosophila duplicate gene plays essential roles in spermatogenesis by regulating several y-linked male fertility genes. PLoS Genet , 2010, 6(12): e1001255. [76] Chen SD, Ni XC, Krinsky BH, Zhang YE, Vibranovski MD, White KP, Long MY. Reshaping of global gene expression networks and sex-biased gene expression by integration of a young gene. EMBO J , 2012, 31(12): 2798-809. [77] Cardoso-Moreira M, Long MY. The origin and evolution of new genes. Methods Mol Biol , 2012, 856: 161-186. [78] Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol , 1986, 3(5): 418-426. [79] Ellrott K, Jaroszewski L, Li WZ, Wooley JC, Godzik A. Expansion of the protein repertoire in newly explored environments: human gut microbiome specific protein families. PLoS Comput Biol , 2010, 6(6): e1000798. [80] Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, Tokishita S, Aerts A, Arnold GJ, Basu MK, Bauer DJ, Cáceres CE, Carmel L, Casola C, Choi JH, Detter JC, Dong QF, Dusheyko S, Eads BD, Fröhlich T, Geiler-Samerotte KA, Gerlach D, Hatcher P, Jogdeo S, Krijgsveld J, Kriventseva EV, Kültz D, Laforsch C, Lindquist E, Lopez J, Manak JR, Muller J, Pangilinan J, Patwardhan RP, Pitluck S, Pritham EJ, Rechtsteiner A, Rho M, Rogozin IB, Sakarya O, Salamov A, Schaack S, Shapiro H, Shiga Y, Skalitzky C, Smith Z, Souvorov A, Sung W, Tang ZJ, Tsuchiya D, Tu H, Vos H, Wang M, Wolf YI, Yamagata H, Yamada T, Ye YZ, Shaw JR, Andrews J, Crease TJ, Tang HX, Lucas SM, Robertson HM, Bork P, Koonin EV, Zdobnov EM, Grigoriev IV, Lynch M, Boore JL. The ecoresponsive genome of Daphnia pulex . Science , 2011, 331(6017): 555-561. [81] Milde S. Hemmrich G, Anton-Erxleben F, Khalturin K, Wittlieb J, Bosch TCG. Characterization of taxonomically restricted genes in a phylum-restricted cell type. Genome Biol , 2009, 10(1): R8. [82] Steele RE, David CN, Technau U. A genomic view of 500 million years of cnidarian evolution. Trends Genet , 2011, 27(1): 7-13. [83] Khalturin K, Anton-Erxleben F, Sassmann S, Wittlieb J, Hemmrich G, Bosch TCG. A novel gene family controls species-specific morphological traits in Hydra . PLoS Biol , 2008, 6(11): e278. [84] Domazet-Loso T, Tautz D. An evolutionary analysis of orphan genes in Drosophila . Genome Res , 2003, 13(10): 2213-2219. [85] Silverstein KAT, Moskal WA Jr, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA. Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J , 2007, 51(2): 262-280. [86] Capra JA, Pollard KS, Singh M. Novel genes exhibit distinct patterns of function acquisition and network integration. Genome Biol , 2010, 11(12): R127. [87] Begun DJ, Lindfors HA, Kern AD, Jones CD. Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba / Drosophila erecta clade. Genetics , 2007, 176(2): 1131-1137. [88] Parkinson J, Blaxter M. Expressed sequence tags: an overview. Methods Mol Biol , 2009, 533: 1-12. [89] Kogenaru S, Qing Y, Guo YP, Wang NA. RNA-seq and microarray complement each other in transcriptome profiling. BMC Genomics , 2012, 13: 629. [90] 祁云霞, 刘永斌, 荣威恒. 转录组研究新技术: RNA-Seq及其应用. 遗传, 2011, 33(11): 1191-1202. [91] Richardson MK. A phylotypic stage for all animals? Dev Cell , 2012, 22(5): 903-904. [92] Švorcová J. The phylotypic stage as a boundary of modular memory: non mechanistic perspective. Theory Biosci , 2012, 131(1): 31-42. [93] Domazet-Lošo T, Tautz D. A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature , 2010, 468(7325): 815-818. [94] Kalinka AT, Varga KM, Gerrard DT, Preibisch S, Corcoran DL, Jarrells J, Ohler U, Bergman CM, Tomancak P. Gene expression divergence recapitulates the developmental hourglass model. Nature , 2010, 468(7325): 811-814. [95] Hazkani-Covo E, Wool D, Graur D. In search of the vertebrate phylotypic stage: a molecular examination of the developmental hourglass model and von Baer's third law. J Exp Zool B Mol Dev Evol , 2005, 304(2): 150-158. [96] Irie N, Kuratani S. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat Commun , 2011, 2: 248. [97] Comte A, Roux J, Robinson-Rechavi M. Molecular signaling in zebrafish development and the vertebrate phylotypic period. Evol Dev , 2010, 12(2): 144-156. [98] Quint M, Drost HG, Gabel A, Ullrich KK, Bönn M, Grosse I. A transcriptomic hourglass in plant embryogenesis. Nature , 2012, 490(7418): 98-101. [99] Levine MT, Jones CD, Kern AD, Lindfors HA, Begun DJ. Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. Proc Natl Acad Sci USA , 2006, 103(26): 9935-9939. [100] Nurminsky DI, Nurminskaya MV, De Aguiar D, Hartl DL. Selective sweep of a newly evolved sperm-specific gene in Drosophila . Nature , 1998, 396(6711): 572-575. [101] Yeh SD, Do T, Abbassi M, Ranz JM. Functional relevance of the newly evolved sperm dynein intermediate chain multigene family in Drosophila melanogaster males. Commun Integr Biol , 2012, 5(5): 462-465. [102] Yeh SD, Do T, Chan C, Cordova A, Carranza F, Yamamoto EA, Abbassi M, Gandasetiawan KA, Librado P, Damia E, Dimitri P, Rozas J, Hartl DL, Roote J, Ranz JM. Functional evidence that a recently evolved Drosophila sperm-specific gene boosts sperm competition. Proc Natl Acad Sci USA , 2012, 109(6): 2043-2048. [103] Quezada-Díaz JE, Muliyil T, Río J, Betrán E. Drcd-1 related: a positively selected spermatogenesis retrogene in Drosophila . Genetica , 2010, 138(9-10): 925-937. [104] Wu DD, Wang X, Li Y, Zeng L, Irwin DM, Zhang YP. "Out of pollen" hypothesis for origin of new genes in flowering plants: study from Arabidopsis thaliana . Genome Biol Evol , 2014, 6(10): 2822-2829. [105] Chen SD, Spletter M, Ni XC, White KP, Luo LQ, Long MY. Frequent recent origination of brain genes shaped the evolution of foraging behavior in Drosophila . Cell Rep , 2012, 1(2): 118-132. [106] Chen Y, Dai HZ, Chen SD, Zhang LY, Long MY. Highly tissue specific expression of Sphinx supports its male courtship related role in Drosophila melanogaster . PLoS One , 2011, 6(4): e18853. [107] Fortna A, Kim Y, MacLaren E, Marshall K, Hahn G, Meltesen L, Brenton M, Hink R, Burgers S, Hernandez-Boussard T, Karimpour-Fard A, Glueck D, McGavran L, Berry R, Pollack J, Sikela JM. Lineage-specific gene duplication and loss in human and great ape evolution. PLoS Biol , 2004, 2(7): E207. [108] Zhang YE, Landback P, Vibranovski M, Long MY. New genes expressed in human brains: implications for annotating evolving genomes. Bioessays , 2012, 34(11): 982-991. [109] Charrier C, Joshi K, Coutinho-Budd J, Kim JE, Lambert N, de Marchena J, Jin WL, Vanderhaeghen P, Ghosh A, Sassa T, Polleux F. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell , 2012, 149(4): 923-935. [110] Dennis MY, Nuttle X, Sudmant PH, Antonacci F, Graves TA, Nefedov M, Rosenfeld JA, Sajjadian S, Malig M, Kotkiewicz H, Curry CJ, Shafer S, Shaffer LG, de Jong PJ, Wilson RK, Eichler EE. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell , 2012, 149(4): 912-922. [111] Wu DD, Irwin DM, Zhang YP. De novo origin of human protein-coding genes. PLoS Genet , 2011, 7(11): e1002379. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: