遗传 ›› 2015, Vol. 37 ›› Issue (12): 1251-1257.doi: 10.16288/j.yczz.15-130

• 技术与方法 • 上一篇    下一篇

肺癌循环肿瘤细胞的单细胞EGFR基因突变检测

孙帅, 邓宇亮   

  1. 上海交通大学,系统生物医学研究院,上海200240
  • 收稿日期:2015-07-16 出版日期:2015-12-20 发布日期:2015-09-22
  • 通讯作者: 邓宇亮,博士,助理研究员,研究方向:基于微流控平台的循环肿瘤细胞的研究。E-mail: yldeng@sjtu.edu.cn E-mail:sunshuai_good@163.com
  • 作者简介:孙帅,硕士研究生,专业方向:癌症患者血液循环肿瘤细胞的基因检测。E-mail: sunshuai_good@163.com
  • 基金资助:
    国家自然科学基金项目(编号:21205077),上海市自然科学基金项目(编号:13ZR1456100)和教育部博士点基金;(编号:20130073120106)资助

Single-cell detection of EGFR gene mutation in circulating tumor cells in lung cancer

Shuai Sun, Yuliang Deng   

  1. Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2015-07-16 Online:2015-12-20 Published:2015-09-22

摘要: 循环肿瘤细胞(Circulating tumor cells,CTCs)是从肿瘤原发病灶脱落并侵入外周血循环的肿瘤细胞。由于CTCs存在较大的异质性,其与癌症发展转移密切相关,但目前尚缺乏有效的CTCs单细胞异质性检测方法。鉴于此,本文发展了在单细胞层面对CTCs进行基因突变的检测方法并用于单个肺癌CTC的EGFR(Epidermal growth factor receptor)基因突变检测。首先用集成式微流控系统完成血液中稀有CTCs的捕获,接着将CTCs释放入含有多个微孔的微阵列芯片中,得到含有单个CTC的微孔,通过显微操作将单个CTC转入PCR管内完成单细胞基因组的放大,并进行单细胞的EGFR基因突变检测。以非小细胞肺癌细胞系A549、NCI-H1650和NCI-H1975为样本,通过芯片与毛细管修饰、引物扩增条件(复性温度、循环次数)的优化,结果显示在复性温度59℃、30个循环次数的条件下,引物扩增效果最优。利用该方法成功地对非小细胞肺癌(Non-small cell lung cancer, NSCLC)患者的血液样本进行了测试。从患者2 mL血液中获取5个CTCs,分别对其EGFR基因的第18、19、20、21外显子进行测序,发现该患者CTCs均为EGFR野生型。研究结果证明此检测方法可以灵敏地用于单个CTC基因突变的检测,在临床研究上具有重要的指导意义。

关键词: 循环肿瘤细胞, 微流控芯片, 单细胞基因突变检测, EGFR

Abstract: Circulating tumor cells (CTCs) are cells that shed from a primary tumor and enter the peripheral blood circulation. The CTCs are closely associated with tumor development and metastasis because of its high heterogeneity. However, there are still no effective methods to detect single-cell heterogeneity of the CTCs. To this end, we developed a method to detect gene mutation in CTCs at the single-cell level and applied it to the detection of EGFR gene mutation in single lung cancer CTC. Specifically, the rare CTCs were captured from blood using an integrated microfluidic system, and then were released into a microchip with thousands of nanoliter wells to isolate single CTC. The single CTC was then transferred into a PCR tube under the microscope for single-cell genome amplification and detection of EGFR gene mutation. We firstly modified chip and capillary and optimized PCR conditions (annealing temperature, number of cycles) using non-small-cell lung cancer (NSCLC) cell lines A549, NCI-H1650 and NCI-H1975 as samples, which showed maximal amplification after 30 cycles with an annealing temperature at 59℃. We then successfully detected blood samples from NSCLC patients using this method. 5 CTCs were obtained from 2 mL patient's blood and the sequencing of EGFR exons 18, 19, 20 and 21 showed no mutations. Our results demonstrated that this method is sensitive enough to detect gene mutation in single CTC and has guiding significance in clinic research.

Key words: circulating tumor cells, microfluidic chip, single-cell gene mutation, EGFR