遗传 ›› 2016, Vol. 38 ›› Issue (5): 418-426.doi: 10.16288/j.yczz.15-485
许佳, 侯宁, 韩凝, 边红武, 朱睦元
收稿日期:
2015-12-01
修回日期:
2016-01-29
出版日期:
2016-05-20
发布日期:
2016-04-05
通讯作者:
韩凝,博士,副教授,研究方向:遗传学。E-mail: ninghan@zju.edu.cn
E-mail:mengxiang418@126.com
作者简介:
许佳,硕士研究生,专业方向:遗传学。E-mail: mengxiang418@126.com
Jia Xu, Ning Hou, Ning Han, Hongwu Bian, Muyuan Zhu
Received:
2015-12-01
Revised:
2016-01-29
Online:
2016-05-20
Published:
2016-04-05
摘要: 植物激素是调控植物生长发育的信号分子。近年来的研究发现,小分子RNA作为基因表达调控网络的组分,参与植物激素信号途径,在植物生长发育和胁迫反应方面发挥重要作用。本文综述了miRNA和次级siRNA(Short interfering RNAs)介导的基因调控与植物激素信号通路相互作用的研究进展,主要包括生长素、赤霉素、油菜素内酯和脱落酸途径涉及的miRNA及其功能,并对不同发育过程中miRNA参与的不同激素信号通路的交叉和互作进行了讨论。
许佳, 侯宁, 韩凝, 边红武, 朱睦元. 小分子RNA在植物激素信号通路中的调控功能[J]. 遗传, 2016, 38(5): 418-426.
Jia Xu, Ning Hou, Ning Han, Hongwu Bian, Muyuan Zhu. The regulatory roles of small RNAs in phytohormone signaling pathways[J]. HEREDITAS(Beijing), 2016, 38(5): 418-426.
[1] Curaba J, Singh MB, Bhalla PL. miRNAs in the crosstalk between phytohormone signalling pathways. J Exp Bot , 2014, 65(6): 1425-1438. [2] Axtell MJ. Classification and comparison of small RNAs from plants. Annu Rev Plant Biol , 2013, 64: 137-159. [3] Cuperus JT, Fahlgren N, Carrington JC. Evolution and functional diversification of MIRNA genes. Plant Cell , 2011, 23(2): 431-442. [4] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell , 2004, 116(2): 281-297. [5] Dhir A, Proudfoot NJ. Feed backwards model for microRNA processing and splicing in plants. EMBO Rep , 2013, 14(7): 581-582. [6] Eamens AL, Wang MB. Alternate approaches to repress endogenous microRNA activity in Arabidopsis thaliana . Plant Signal Behav , 2014, 6(3): 349-359. [7] Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS. Nuclear processing and export of microRNAs in Arabidopsis . Proc Natl Acad Sci USA , 2005, 102(10): 3691- 3696. [8] Zhang BH, Wang QL, Pan XP. MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol , 2007, 210(2): 279-289. [9] Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O. Widespread translational inhibition by plant miRNAs and siRNAs. Science , 2008, 320(5880): 1185-1190. [10] Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH. 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci USA , 2010, 107(34): 15269-15274. [11] Howell MD, Fahlgren N, Chapman EJ, Cumbie JS, Sullivan CM, Givan SA, Kasschau KD, Carrington JC. Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell , 2007, 19(3): 926-942. [12] Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA, Carrington JC. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis . Nat Struct Mol Biol , 2010, 17(8): 997-1003. [13] Schwab R, Maizel A, Ruiz-Ferrer V, Garcia D, Bayer M, Crespi M, Voinnet O, Martienssen RA. Endogenous TasiRNAs mediate non-cell autonomous effects on gene regulation in Arabidopsis thaliana . PLoS One , 2009, 4(6): e5980. [14] Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell , 2009, 136(4): 669-687. [15] Han MH, Goud S, Song L, Fedoroff N. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci USA , 2004, 101(4): 1093-1098. [16] Zhao X, Li L. Comparative analysis of microRNA promoters in Arabidopsis and rice. Genom Proteom Bioinformat , 2013, 11(1): 56-60. [17] Marín-González E, Suárez-López P. "And yet it moves": cell-to-cell and long-distance signaling by plant microRNAs. Plant Sci , 2012, 196: 18-30. [18] Guo HS, Xie Q, Fei JF, Chua NH. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell , 2005, 17(5): 1376-1386. [19] Srivastava S, Srivastava AK, Suprasanna P, D'Souza SF. Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea . J Exp Bot , 2013, 64(1): 303- 315. [20] Yoon EK, Yang JH, Lim J, Kim SH, Kim SK, Lee WS. Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res , 2010, 38(4): 1382-1391. [21] Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis . Plant Cell , 2004, 16(8): 2001-2019. [22] Liu Q, Zhang YC, Wang CY, Luo YC, Huang QJ, Chen SY, Zhou H, Qu LH, Chen YQ. Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett , 2009, 583(4): 723-728. [23] Chen L, Wang TZ, Zhao MG, Zhang WH. Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome level. Plant Sci , 2012, 184: 14-19. [24] Zuo JH, Zhu BZ, Fu DQ, Zhu Y, Ma YZ, Chi LH, Ju Z, Wang YX, Zhai BQ, Luo YB. Sculpting the maturation, softening and ethylene pathway: The influences of microRNAs on tomato fruits. BMC Genomics , 2012, 13: 7. [25] Achard P, Herr A, Baulcombe DC, Harberd NP. Modulation of floral development by a gibberellin-regulated microRNA. Development , 2004, 131(14): 3357-3365. [26] Chen ZH, Bao ML, Sun YZ, Yang YJ, Xu XH, Wang JH, Han N, Bian HW, Zhu MY. Regulation of auxin response by miR393-targeted transport inhibitor response protein 1 is involved in normal development in Arabidopsis . Plant Mol Biol , 2011, 77(6): 619-629. [27] Si-Ammour A, Windels D, Arn-Bouldoires E, Kutter C, Ailhas J, Meins F, Jr., Vazquez F. miR393 and secondary siRNAs regulate expression of the TIR1/AFB2 auxin receptor clade and auxin-related development of Arabidopsis leaves. Plant Physiol , 2011, 157(2): 683-691. [28] Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutierrez RA. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana . Proc Natl Acad Sci USA , 2010, 107(9): 4477-4482. [29] Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science , 2006, 312(5772): 436-439. [30] Etemadi M, Gutjahr C, Couzigou JM, Zouine M, Lauressergues D, Timmers A, Audran C, Bouzayen M, Becard G, Combier JP. Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol , 2014, 166(1): 281-292. [31] Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J , 2007, 52(1): 133-146. [32] Mallory AC, Bartel DP, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell , 2005, 17(5): 1360-1375. [33] Nizampatnam NR, Schreier SJ, Damodaran S, Adhikari S, Subramanian S. microRNA160 dictates stage-specific auxin and cytokinin sensitivities and directs soybean nodule development. Plant J , 2015, 84(1): 140-153. [34] [34] Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, Staswick P, Kowalczyk M, Păcurar M, Demailly H, Geiss G, Bellini C. Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell , 2012, 24(6): 2515-2127. [35] Ru P, Xu L, Ma H, Huang H. Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res , 2006, 16(5): 457-465. [36] Wu G, Poethig RS. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3 . Development , 2006, 133(18): 3539-3547. [37] Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume L, Crespi MD, Maizel A. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell , 2010, 22(4): 1104-1117. [38] Jung JH, Seo PJ, Kang SK, Park CM. miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Mol Biol , 2011, 76(1-2): 35-45. [39] Yu S, Galvao VC, Zhang YC, Horrer D, Zhang TQ, Hao YH, Feng YQ, Wang S, Schmid M, Wang JW. Gibberellin regulates the Arabidopsis floral transition through miR156- targeted SQUAMOSA promoter binding-like transcription factors. Plant Cell , 2012, 24(8): 3320-3332. [40] Cheng H, Qin LJ, Lee S, Fu XD, Richards DE, Cao DN, Luo D, Harberd NP, Peng JR. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development , 2004, 131(5): 1055-1064. [41] Tsuji H, Aya K, Ueguchi-Tanaka M, Shimada Y, Nakazono M, Watanabe R, Nishizawa NK, Gomi K, Shimada A, Kitano H, Ashikari M, Matsuoka M. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J , 2006, 47(3): 427-444. [42] Xia KF, Ou XJ, Tang HD, Wang R, Wu P, Jia YX, Wei XY, Xu XL, Kang SH, Kim SK, Zhang MY. Rice microRNA osa-miR1848 targets the obtusifoliol 14α-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress. New Phytol , 2015, 208(3): 790-802. [43] Reyes JL, Chua NH. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J , 2007, 49(4): 592-606. [44] Luan MD, Xu MY, Lu YM, Zhang L, Fan YL, Wang L. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. Gene , 2015, 555(2): 178-185. [45] Chen ZH, Hu LZ, Han N, Hu JQ, Yang YJ, Xiang TH, Zhang XJ, Wang LL. Overexpression of a miR393-resistant form of Transport Inhibitor Response Protein 1 ( mTIR1 ) enhances salt tolerance by increased osmoregulation and Na + exclusion in Arabidopsis thaliana . Plant Cell Physiol , 2015, 56(1): 73-83. [46] Iglesias MJ, Terrile MC, Windels D, Lombardo MC, Bartoli CG, Vazquez F, Estelle M, Casalongue CA. MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis . PLoS One , 2014, 9(9): e107678. [47] Zhang XM, Zhao HW, Gao S, Wang WC, Katiyar-Agarwal S, Huang HD, Raikhel N, Jin HL. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393(*)-mediated silencing of a Golgi-localized SNARE gene, MEMB12 . Mol Cell , 2011, 42(3): 356-366. [48] Wang JJ, Guo HS. Cleavage of INDOLE-3-ACETIC ACID INDUCIBLE28 mRNA by microRNA847 upregulates auxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis . Plant Cell , 2015, 27(3): 574-590. [49] Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis . Plant Cell , 2005, 17(8): 2204-2216. [50] Gutierrez L, Bussell JD, Păcurar DI, Schwambach J, Păcurar M, Bellini C. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell , 2009, 21(10): 3119-3132. [51] Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis . Curr Biol , 2006, 16(9): 939-944. [52] Hunter C, Willmann MR, Wu G, Yoshikawa M, de la Luz Gutiérrez-Nava M, Poethig SR. Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis . Development , 2006, 133(15): 2973- 2981. [53] Rubio-Somoza I, Cuperus JT, Weigel D, Carrington JC. Regulation and functional specialization of small RNA- target nodes during plant development. Curr Opin Plant Biol , 2009, 12(5): 622-627. [54] Millar AA, Gubler F. The Arabidopsis GAMYB-like genes, MYB33 and MYB65 , are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell , 2005, 17(3): 705-721. [55] Alonso-Peral MM, Li JY, Li YJ, Allen RS, Schnippenkoetter W, Ohms S, White RG, Millar AA. The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis . Plant Physiol , 2010, 154(2): 757-771. [56] Yanai O, Shani E, Russ D, Ori N. Gibberellin partly mediates LANCEOLATE activity in tomato. Plant J , 2011, 68(4): 571-582. [57] Kim BH, Kwon Y, Lee BH, Nam KH. Overexpression of miR172 suppresses the brassinosteroid signaling defects of bak1 in Arabidopsis . Biochem Biophys Res Commun , 2014, 447(3): 479-484. [58] Song JB, Gao S, Sun D, Li H, Shu XX, Yang ZM. miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner. BMC Plant Biol , 2013, 13: 210. [59] Zou YM, Wang YN, Wang LX, Yang L, Wang R, Li X. miR172b controls the transition to autotrophic development inhibited by ABA in Arabidopsis . PLoS One , 2013, 8(5): e64770. [60] Jia F, Rock CD. Jacalin lectin At5g28520 is regulated by ABA and miR846. Plant Signal Behav , 2013, 8(6): e24563. [61] Nonogaki H. Repression of transcription factors by microRNA during seed germination and postgerminaiton: Another level of molecular repression in seeds. Plant Signal Behav , 2008, 3(1): 65-67. [62] Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell , 2009, 21(5): 1453-1472. [63] Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouche N, Gasciolli V, Vaucheret H. DRB4-dependent TAS3 trans- acting siRNAs control leaf morphology through AGO7. Curr Biol , 2006, 16(9): 927-932. [64] Li H, Johnson P, Stepanova A, Alonso JM, Ecker JR. Convergence of signaling of differential cell growth pathways in the control in Arabidopsis . Dev Cell , 2004, 7(2): 193-204. [65] Wang L, Hua DP, He JN, Duan Y, Chen ZZ, Hong XH, Gong ZZ. Auxin Response Factor2 ( ARF2 ) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis . PLoS Genet , 2011, 7(7): e1002172. |
[1] | 王天宇,董园园,李海燕,李校堃. MicroRNAs的分子进化与调控机制[J]. 遗传, 2010, 32(9): 874-880. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: