[1] Zhang B, Stellwag EJ, Pan X. Large-scale genome analy-sis reveals unique features of microRNAs. Gene, 2009, 443(1–2): 100–109.
[2] He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 2004, 5(7): 522–531.
[3] Lee RC, Feinbaum RL, Ambros V. The C. elegans het-erochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843–854.
[4] Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Ku-roda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman, M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000, 408(6808): 86–89.
[5] Ying SY, Lin SL. Intron-mediated RNA interference and mi-croRNA biogenesis. Methods Mol Biol, 2009, 487: 387–413.
[6] Ambros V. The functions of animal microRNAs. Nature, 2004, 431(7006): 350–355. [7] Collins RE, Cheng X. Structural domains in RNAi. FEBS Lett, 2005, 579(26): 5841–5849.
[8] Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS. Nuclear processing and export of microRNAs in Arabi-dopsis. Proc Natl Acad Sci USA, 2005, 102(10): 3691–3696.
[9] Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, of-ten flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1): 15–20.
[10] Shabalina SA, Koonin EV. Origins and evolution of eu-karyotic RNA interference. Trends Ecol Evol, 2008, 23(10): 578–587.
[11] Ye X, Paroo Z, Liu Q. Functional anatomy of the Droso-phila microRNA-generating enzyme. J Biol Chem, 2007, 282(39): 28373–28378.
[12] Matranga C, Zamore PD. Small silencing RNAs. Curr Biol, 2007, 17(18): R789–793.
[13] Miyoshi K, Miyoshi T, Hartig JV, Siomi H, Siomi MC. Mo-lecular mechanisms that funnel RNA precursors into en-dogenous small-interfering RNA and microRNA biogenesis pathways in Drosophila. RNA, 2010, 16(3): 506–515.
[14] Chekulaeva M, Filipowicz W. Mechanisms of miRNA- mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol, 2009, 21(3): 452–460.
[15] Jinek M, Fabian MR, Coyle SM, Sonenberg N, Doudna JA. Structural insights into the human GW182-PABC interac-tion in microRNA-mediated deadenylatio. Nat Struct Mol Biol, 2010, 17(2): 238–240.
[16] Davis S, Lollo B, Freier S, Esau C. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res, 2006,34(8): 2294–2304.
[17] Malhas A, Saunders NJ, Vaux DJ. The nuclear envelope can control gene expression and cell cycle progression via miRNA regulation. Cell Cycle, 2010, 9(3): 531–539.
[18] Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O. Widespread translational inhibition by plant miRNAs and siRNAs. Science, 2008, 320(5880): 1185–1190.
[19] Margis R, Fusaro AF, Smith NA, Curtin SJ, Watson JM, Finnegan EJ, Waterhouse PM. The evolution and diversi-fication of Dicers in plants. FEBS Lett, 2006, 580(10): 2442–2450.
[20] Chapman EJ, Carrington JC. Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet, 2007, 8(11): 884–896.
[21] Cerutti H, Casas-Mollano JA. On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet, 2006, 50(2): 81–99.
[22] Piao X, Zhang X, Wu L, Belasco JG. CCR4-NOT deade-nylates RISC-associated mRNA in human cells. Mol Cell Biol, 2010, 30(6): 1486–1494.
[23] Axtell MJ, Bartel DP. Antiquity of microRNAs and their targets in land plants. Plant Cell, 2005, 17(6): 1658–1673.
[24] Floyd SK, Bowman JL. Gene regulation: ancient mi-croRNA target sequences in plants.
|