[1] Zhang B, Stellwag EJ, Pan X. Large-scale genome analy-sis reveals unique features of microRNAs. Gene, 2009, 443(1–2): 100–109.
[2] He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 2004, 5(7): 522–531.
[3] Lee RC, Feinbaum RL, Ambros V. The C. elegans het-erochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843–854.
[4] Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Ku-roda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman, M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000, 408(6808): 86–89.
[5] Ying SY, Lin SL. Intron-mediated RNA interference and mi-croRNA biogenesis. Methods Mol Biol, 2009, 487: 387–413.
[6] Ambros V. The functions of animal microRNAs. Nature, 2004, 431(7006): 350–355. [7] Collins RE, Cheng X. Structural domains in RNAi. FEBS Lett, 2005, 579(26): 5841–5849.
[8] Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS. Nuclear processing and export of microRNAs in Arabi-dopsis. Proc Natl Acad Sci USA, 2005, 102(10): 3691–3696.
[9] Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, of-ten flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1): 15–20.
[10] Shabalina SA, Koonin EV. Origins and evolution of eu-karyotic RNA interference. Trends Ecol Evol, 2008, 23(10): 578–587.
[11] Ye X, Paroo Z, Liu Q. Functional anatomy of the Droso-phila microRNA-generating enzyme. J Biol Chem, 2007, 282(39): 28373–28378.
[12] Matranga C, Zamore PD. Small silencing RNAs. Curr Biol, 2007, 17(18): R789–793.
[13] Miyoshi K, Miyoshi T, Hartig JV, Siomi H, Siomi MC. Mo-lecular mechanisms that funnel RNA precursors into en-dogenous small-interfering RNA and microRNA biogenesis pathways in Drosophila. RNA, 2010, 16(3): 506–515.
[14] Chekulaeva M, Filipowicz W. Mechanisms of miRNA- mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol, 2009, 21(3): 452–460.
[15] Jinek M, Fabian MR, Coyle SM, Sonenberg N, Doudna JA. Structural insights into the human GW182-PABC interac-tion in microRNA-mediated deadenylatio. Nat Struct Mol Biol, 2010, 17(2): 238–240.
[16] Davis S, Lollo B, Freier S, Esau C. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res, 2006,34(8): 2294–2304.
[17] Malhas A, Saunders NJ, Vaux DJ. The nuclear envelope can control gene expression and cell cycle progression via miRNA regulation. Cell Cycle, 2010, 9(3): 531–539.
[18] Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O. Widespread translational inhibition by plant miRNAs and siRNAs. Science, 2008, 320(5880): 1185–1190.
[19] Margis R, Fusaro AF, Smith NA, Curtin SJ, Watson JM, Finnegan EJ, Waterhouse PM. The evolution and diversi-fication of Dicers in plants. FEBS Lett, 2006, 580(10): 2442–2450.
[20] Chapman EJ, Carrington JC. Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet, 2007, 8(11): 884–896.
[21] Cerutti H, Casas-Mollano JA. On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet, 2006, 50(2): 81–99.
[22] Piao X, Zhang X, Wu L, Belasco JG. CCR4-NOT deade-nylates RISC-associated mRNA in human cells. Mol Cell Biol, 2010, 30(6): 1486–1494.
[23] Axtell MJ, Bartel DP. Antiquity of microRNAs and their targets in land plants. Plant Cell, 2005, 17(6): 1658–1673.
[24] Floyd SK, Bowman JL. Gene regulation: ancient mi-croRNA target sequences in plants. Nature, 2004, 428(6982): 485–486.
[25] Arteaga-Vazquez M, Caballero-Perez J, Vielle-Calzada JP. A family of microRNAs present in plants and animals. Plant Cell, 2006, 18(12): 3355–3369.
[26] Hinas A, Reimegard J, Wagner EG, Nellen W, Ambros VR, Soderbom F. The small RNA repertoire of Dictyos-telium discoideum and its regulation by components of the RNAi pathway. Nucleic Acids Res, 2007, 35(20): 6714–6726.
[27] Grun D, Wang YL, Langenberger D, Gunsalus KC, Ra-jewsky N. MicroRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol, 2005, 1(1): e13.
[28] Ruby JG, Stark A, Johnston WK, Kellis M, Bartel DP, Lai EC. Evolution, biogenesis, expression, and target predic-tions of a substantially expanded set of Drosophila mi-croRNAs. Genome Res, 2007, 17(12): 1850–1864.
[29] Esteller M. Epigenetics in cancer. N Engl J Med, 2008, 358(11): 1148–1159.
[30] Weber B, Stresemann C, Brueckner B, Lyko F. Methyla-tion of human microRNA genes in normal and neoplastic cells. Cell Cycle, 2007, 6(9): 1001–1005.
[31] Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H, Knyazev P, Diebold J, Hermeking H. Inactivation of miR-34a by aberrant CpG methylation in mul-tiple types of cancer. Cell Cycle, 2008, 7(16): 2591–2600.
[32] Lujambio A, Calin GA, Villanueva A, Ropero S, San-chez-Cespedes M, Blanco D, Montuenga LM, Rossi S, Nicoloso MS, Faller WJ, Gallagher WM, Eccles SA, Croce CM, Esteller M. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA, 2008, 105(36): 13556–13561.
[33] Wu H, Zhu S, Mo YY. Suppression of cell growth and in-vasion by miR-205 in breast cancer. Cell Res, 2009, 19(4): 439–448.
[34] Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massague J. Endogenous human mi-croRNAs that suppress breast cancer metastasis. Nature, 2008, 451(7175): 147–152.
[35] Marcucci G, Mrozek K, Radmacher MD, Bloomfield CD, Croce CM. MicroRNA expression profiling in acute mye-loid and chronic lymphocytic leukaemias. Best Pract Res Clin Haematol, 2009, 22(2): 239–248.
[36] Kato MA, Fahey TJ 3rd. Molecular markers in thyroid cancer diagnostics. Surg Clin North Am, 2009, 89(5): 1139–1155.
[37] Nag A, King S, Jack T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci USA, 2009, 106(52): 22534–22539.
[38] Zhang J, Xu Y, Huan Q, Chong K. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics, 2009, 10: 449.
[39] Trindade I, Capitao C, Dalmay T, Fevereiro MP, Santos DM. miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta, 2009, 231(3): 705–716.
[40] Liu HC, Hicks JA, Trakooljul N, Zhao SH. Current knowledge of microRNA characterization in agricultural animals. Anim Genet, 2010,41(2): 179-190.
[41] Wang S, Olson EN. AngiomiRs—— key regulators of an-giogenesis. Curr Opin Genet Dev, 2009, 19(3): 205–211.
[42] Chen XM. MicroRNA signatures in liver diseases. World J Gastroenterol, 2009, 15(14): 1665–1672.
[43] Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature, 2007, 449(7164): 919–922.
[44] Sirotkin AV, Laukova M, Ovcharenko D, Brenaut P, Mlyncek M. Identification of microRNAs controlling hu-man ovarian cell proliferation and apoptosis. J Cell Physiol, 2010, 223(1): 49–56.
[45] Yang N, Coukos G, Zhang L. MicroRNA epigenetic al-terations in human cancer: one step forward in diagnosis and treatment. Int J Cancer, 2008, 122(5): 963–968.
[46] Khan AA, Betel D, Miller ML, Sander C, Leslie CS, Marks DS. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol, 2009, 27(6): 549–555.
[47] Peter ME. Targeting of mRNAs by multiple miRNAs: the next step. Oncogene, 2010, 29(15): 2161–2164. |