遗传 ›› 2020, Vol. 42 ›› Issue (8): 739-751.doi: 10.16288/j.yczz.20-014
收稿日期:
2020-01-13
修回日期:
2020-03-11
出版日期:
2020-08-20
发布日期:
2020-04-17
通讯作者:
韩宝瑜
E-mail:hanby15@163.com
作者简介:
邹礼平,在读硕士研究生,专业方向:生物化学与分子生物学。E-mail: 基金资助:
Liping Zou, Cheng Pan, Mengxin Wang, Lin Cui, Baoyu Han()
Received:
2020-01-13
Revised:
2020-03-11
Online:
2020-08-20
Published:
2020-04-17
Contact:
Han Baoyu
E-mail:hanby15@163.com
Supported by:
摘要:
开花是植物对环境的适应性表现,是在多种外源和内源信号形成的复杂成花调控网络下完成。植物激素作为最重要的内源信号参与者,在成花进程中扮演着重要角色。近年来,光周期等成花途径和表观遗传调控中激素的作用机理不断被解析。研究发现激素间存在协同和拮抗作用,并证实多种激素参与赤霉素(gibberellins, GA)途径中DELLA蛋白介导的多种成花调控途径。本文主要综述了GA在植物成花中的调控机理,同时探讨了脱落酸(abscisic acid, ABA)、生长素(auxin, IAA)、细胞分裂素(cytokinin, CTK)、水杨酸(salicylic acid, SA)、茉莉酸(jasmonic acid, JA)和乙烯(ethylene, ET)等其他内源激素在成花中的作用及其与DELLA、miRNAs和转录因子(transcription factor, TFs)等通路串联调控,为全面解析激素调控植物成花的网络提供参考。
邹礼平, 潘铖, 王梦馨, 崔林, 韩宝瑜. 激素调控植物成花机理研究进展[J]. 遗传, 2020, 42(8): 739-751.
Liping Zou, Cheng Pan, Mengxin Wang, Lin Cui, Baoyu Han. Progress on the mechanism of hormones regulating plant flower formation[J]. Hereditas(Beijing), 2020, 42(8): 739-751.
[1] |
Bäurle I, Dean C . The timing of developmental transitions in plants. Cell, 2006,125(4):655-664.
doi: 10.1016/j.cell.2006.05.005 pmid: 16713560 |
[2] |
Amasino R . Seasonal and developmental timing of flowering. Plant J, 2010,61(6):1001-1013.
doi: 10.1111/j.1365-313X.2010.04148.x pmid: 20409274 |
[3] |
Kazan K, Lyons R . The link between flowering time and stress tolerance. J Exp Bot, 2016,67(1):47-60.
doi: 10.1093/jxb/erv441 pmid: 26428061 |
[4] |
Burgarella C, Chantret N, Gay L, Prosperi JM, Bonhomme M, Tiffin P, Young ND, Ronfort J . Adaptation to climate through flowering phenology: a case study in Medicago truncatula. Mol Ecol, 2016,25(14):3397-3415.
doi: 10.1111/mec.13683 pmid: 27144929 |
[5] | Sun CH, Deng XJ, Fang J, Chu CC . An overview of flowering transition in higher plants. Hereditas(Beijing), 2007,29(10):1182-1190. |
孙昌辉, 邓晓建, 方军, 储成才 . 高等植物开花诱导研究进展. 遗传, 2007,29(10):1182-1190. | |
[6] |
Andrés F, Coupland G . The genetic basis of flowering responses to seasonal cues. Nat Rev Genet, 2012,13(9):627-639.
doi: 10.1038/nrg3291 pmid: 22898651 |
[7] |
Mutasa-Göttgens E, Hedden P . Gibberellin as a factor in floral regulatory networks. J Exp Bot, 2009,60(7):1979-1989.
doi: 10.1093/jxb/erp040 pmid: 19264752 |
[8] |
Santner A, Estelle M . Recent advances and emerging trends in plant hormone signalling. Nature, 2009,459(7250):1071-1078.
doi: 10.1038/nature08122 pmid: 19553990 |
[9] |
Wolters H, Jürgens G . Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet, 2009,10(5):305-317.
doi: 10.1038/nrg2558 pmid: 19360022 |
[10] |
Conti L . Hormonal control of the floral transition: Can one catch them all?. Dev Biol, 2017,430(2):288-301.
doi: 10.1016/j.ydbio.2017.03.024 pmid: 28351648 |
[11] |
Bao SJ, Hua CM, Shen LS, Yu H . New insights into gibberellin signaling in regulating flowering in Arabidopsis. J Integr Plant Biol, 2020,62(1):118-131.
doi: 10.1111/jipb.12892 pmid: 31785071 |
[12] | Li JY, Li CY, Smith SM. Hormone metabolism and signaling in plants. Academic Press: New York, NY, 2017: 107-160. |
[13] |
Sun TP, Gubler F . Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol, 2004,55:197-223.
doi: 10.1146/annurev.arplant.55.031903.141753 pmid: 15377219 |
[14] | Gonzalez DH. Plant transcription factors. Academic Press: New York, NY, USA, 2016: 313-328. |
[15] |
Sun TP . The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol, 2011,21(9):R338-R345.
doi: 10.1016/j.cub.2011.02.036 pmid: 21549956 |
[16] |
Wilson RN, Heckman JW, Somerville CR . Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol, 1992,100(1):403-408.
doi: 10.1104/pp.100.1.403 pmid: 16652976 |
[17] |
Eriksson S, Böhlenius H, Moritz T, Nilsson O . GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell, 2006,18(9):2172-2181.
doi: 10.1105/tpc.106.042317 pmid: 16920780 |
[18] |
Harberd NP . Botany: Relieving DELLA restraint. Science, 2003,299(5614):1853-1854.
doi: 10.1126/science.1083217 pmid: 12649470 |
[19] |
Dinesh DC, Villalobos LIAC, Abel S . Structural biology of nuclear auxin action. Trends Plant Sci, 2016,21(4):302-316.
doi: 10.1016/j.tplants.2015.10.019 pmid: 26651917 |
[20] |
Ljung K, Bhalerao RP, Sandberg G . Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J, 2001,28(4):465-474.
doi: 10.1046/j.1365-313x.2001.01173.x pmid: 11737783 |
[21] |
Richter R, Behringer C, Zourelidou M, Schwechheimer C . Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2013,110(32):13192-13197.
doi: 10.1073/pnas.1304250110 pmid: 23878229 |
[22] |
Campos-Rivero G, Osorio-Montalvo P, Sánchez-Borges R, Us-Camas R, Duarte-Aké F , De-la-Peña C. Plant hormone signaling in flowering: An epigenetic point of view. J Plant Physiol, 2017,214:16-27.
doi: 10.1016/j.jplph.2017.03.018 pmid: 28419906 |
[23] |
Porri A, Torti S, Romera-Branchat M, Coupland G . Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development, 2012,139(2):2198-2209.
doi: 10.1242/dev.077164 |
[24] |
Galvão VC, Horrer D, Küttner F, Schmid M . Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development, 2012,139(21):4072-4082.
doi: 10.1242/dev.080879 pmid: 22992955 |
[25] |
Tanaka H, Dhonukshe P, Brewer PB, Friml J . Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci, 2006,63(23):2738-2754.
doi: 10.1007/s00018-006-6116-5 pmid: 17013565 |
[26] |
Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y . Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell, 1991,3(7):677-684.
doi: 10.1105/tpc.3.7.677 pmid: 12324609 |
[27] |
Yu CW, Liu X, Luo M, Chen C, Lin X, Tian G, Lu Q, Cui Y, Wu K . HISTONE DEACETYLASE6 interacts with flowering locus D and regulates flowering in Arabidopsis. Plant Physiol, 2011,156(1):173-184.
doi: 10.1104/pp.111.174417 pmid: 21398257 |
[28] |
Hou XL, Zhou JN, Liu C, Liu L, Shen LS, Yu H . Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nat Commun, 2014,5:4601.
doi: 10.1038/ncomms5601 pmid: 25105952 |
[29] |
Hisamatsu T, King RW . The nature of floral signals in Arabidopsis. II. Roles for FLOWERING LOCUS T (FT) and gibberellin. J Exp Bot, 2008,59(14):3821-3829.
doi: 10.1093/jxb/ern232 pmid: 18931352 |
[30] |
Wang H, Pan J, Li Y, Lou D, Hu Y, Yu D . The DELLA-CONSTANS transcription factor cascade integrates gibberellic acid and photoperiod signaling to regulate flowering. Plant Physiol, 2016,172(1):479-488.
doi: 10.1104/pp.16.00891 pmid: 27406167 |
[31] |
Aukerman MJ, Sakai H . Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell, 2003,15(11):2730-2741.
doi: 10.1105/tpc.016238 pmid: 14555699 |
[32] |
Chen X . A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004,303(5666):2022-2025.
doi: 10.1126/science.1088060 pmid: 12893888 |
[33] |
Mathieu J, Warthmann N, Küttner F, Schmid M . Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol, 2007,17(12):1055-1060.
doi: 10.1016/j.cub.2007.05.009 pmid: 17540570 |
[34] |
Kim JJ, Lee JH, Kim W, Jung HS, Huijser P, Ahn JH . The microRNA156-SQUAMOSA promoter binding protein-like3 module regulates ambient temperature-responsive flowering via flowering locus T in Arabidopsis. Plant Physiol, 2012,159(1):461-478.
doi: 10.1104/pp.111.192369 pmid: 22427344 |
[35] |
Tiwari SB, Shen Y, Chang HC, Hou Y, Harris A, Ma SF, McPartland M, Hymus GJ, Adam L, Marion C, Belachew A, Repetti PP, Reuber TL, Ratcliffe OJ. The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol, 2010,187(1):57-66.
doi: 10.1111/j.1469-8137.2010.03251.x pmid: 20406410 |
[36] |
Xu F, Li T, Xu PB, Li L, Du SS, Lian HL, Yang HQ . DELLA proteins physically interact with CONSTANS to regulate flowering under long days in Arabidopsis. Febs Lett, 2016,590(4):541-549.
doi: 10.1002/1873-3468.12076 pmid: 26801684 |
[37] |
Kumimoto RW, Adam L, Hymus GJ, Repetti PP, Reuber TL, Marion CM, Hempel FD, Ratcliffe OJ . The Nuclear Factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis. Planta, 2008,228(5):709-723.
doi: 10.1007/s00425-008-0773-6 pmid: 18600346 |
[38] |
Cao S, Kumimoto RW, Gnesutta N, Calogero AM, Mantovani R, Holt BF . A distal CCAAT/NUCLEAR FACTOR Y complex promotes chromatin looping at the FLOWERING LOCUS T promoter and regulates the timing of flowering in Arabidopsis. Plant Cell, 2014,26(3):1009-1017.
doi: 10.1105/tpc.113.120352 pmid: 24610724 |
[39] |
Davière JM, Achard P . A pivotal role of DELLAs in regulating multiple hormone signals. Mol Plant, 2016,9(1):10-20.
doi: 10.1016/j.molp.2015.09.011 pmid: 26415696 |
[40] |
Fernández V, Takahashi Y, Le Gourrierec J, Coupland G . Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days. Plant J, 2016,86(5):426-440.
doi: 10.1111/tpj.13183 pmid: 27117775 |
[41] |
Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E, Harberd NP, Wigge PA . Transcription factor PIF4 controls the thermosensory activation of flowering. Nature, 2012,484(7397):242-245.
doi: 10.1038/nature10928 |
[42] |
Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz JM, Kircher S, Schäfer E, Fu X, Fan LM, Deng XW . Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 2008,451(7177):475-479.
doi: 10.1038/nature06448 pmid: 18216856 |
[43] |
Galvão VC, Collani S, Horrer D, Schmid M . Gibberellic acid signaling is required for ambient temperature-mediated induction of flowering in Arabidopsisthaliana. Plant J, 2015,84(5):949-962.
doi: 10.1111/tpj.13051 pmid: 26466761 |
[44] |
Li KL, Yu RB, Fan LM, Wei N, Chen HD, Deng XW . DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nat Commun, 2016,7:11868.
doi: 10.1038/ncomms11868 pmid: 27282989 |
[45] |
Park J, Nguyen KT, Park E, Jeon JS, Choi G . DELLA proteins and their interacting RING Finger proteins repress gibberellin responses by binding to the promotersof a subset of gibberellin-responsive genes in Arabidopsis. Plant Cell, 2013,25(3):927-943.
doi: 10.1105/tpc.112.108951 pmid: 23482857 |
[46] |
Nguyen KT, Park J, Park E, Lee I, Choi G . The Arabidopsis RING domain protein BOI inhibits flowering via CO-dependent and CO-independent mechanisms. Mol Plant, 2015,8(12):1725-1736.
doi: 10.1016/j.molp.2015.08.005 pmid: 26298008 |
[47] |
Li MZ, An FY, Li WY, Ma MD, Feng Y, Zhang X, Guo HW . DELLA proteins interact with FLC to repress flowering transition. J Integr Plant Biol, 2016,58(7):642-655.
doi: 10.1111/jipb.12451 pmid: 26584710 |
[48] |
Jang S, Torti S, Coupland G . Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. Plant J, 2009,60(4):614-625.
doi: 10.1111/j.1365-313X.2009.03986.x pmid: 19656342 |
[49] |
Song YH, Lee I, Lee SY, Imaizumi T, Hong JC . CONSTANS and ASYMMETRIC LEAVES 1 complex is involved in the induction of FLOWERING LOCUS T in photoperiodic flowering in Arabidopsis. Plant J, 2012,69(2):332-342.
doi: 10.1111/j.1365-313X.2011.04793.x pmid: 21950734 |
[50] |
Zhu Y, Lu L, Shen LS, Yu H . NaKR1 regulates long-distance movement of FLOWERING LOCUS T in Arabidopsis. Nat Plants, 2016,2(6):16075.
doi: 10.1038/nplants.2016.75 pmid: 27255839 |
[51] |
Regnault T, Davière JM, Wild M, Sakvarelidze-Achard L, Heintz D, Carrera Bergua E, Lopez Diaz I, Gong F, Hedden P, Achard P . The gibberellin precursor GA12 acts as a long-distance growth signal in Arabidopsis. Nat Plants, 2015,1(6):15073.
doi: 10.1038/nplants.2015.73 |
[52] |
Tal I, Zhang Y, Jørgensen ME, Pisanty O, Barbosa IC, Zourelidou M, Regnault T, Crocoll C, Olsen CE, Weinstain R, Schwechheimer C, Halkier BA, Nour-Eldin HH, Estelle M, Shani E . The Arabidopsis NPF3 protein is a GA transporter. Nat Commun, 2016,7:11486.
doi: 10.1038/ncomms11486 pmid: 27139299 |
[53] |
Sharma N, Xin R, Kim DH, Sung S, Lange T, Huq E . NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day conditions in Arabidopsis. Development, 2016,143(4):682-690.
doi: 10.1242/dev.128595 pmid: 26758694 |
[54] |
Andrés F, Porri A, Torti S, Mateos J, Romera-Branchat M, García-Martínez JL, Fornara F, Gregis V, Kater MM, Coupland G . SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the Arabidopsis shoot apex to regulate the floral transition. Proc Natl Acad Sci USA, 2014,111(26):E2760-E2769.
doi: 10.1073/pnas.1409567111 pmid: 24979809 |
[55] | Li D, Liu C, Shen LS, Wu Y, Chen HY, Robertson M, Helliwell CA, Ito T, Meyerowitz E, Yu H . A repressor complex governs the integration of flowering signals in Arabidopsis. Dve Cell, 2008,15(1):110-120. |
[56] |
Achard P, Herr A, Baulcombe DC, Harberd NP . Modulation of floral development by a gibberellin-regulated microRNA. Development, 2004,131(14):3357-3365.
doi: 10.1242/dev.01206 pmid: 15226253 |
[57] |
Blazquez M, Green R, Nilsson O, Sussman MR, Weigel D . Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell, 1998,10(5):791-800.
doi: 10.1105/tpc.10.5.791 pmid: 9596637 |
[58] |
Blázquez M, Weigel D . Integration of floral inductive signals in Arabidopsis. Nature, 2000,404(6780):889-892.
doi: 10.1038/35009125 pmid: 10786797 |
[59] |
Gocal GFW, Sheldon CC, Gubler F, Moritz T, Bagnall DJ, MacMillan CP, Li SF, Parish RW, Dennis ES, Weigel D, King RW. GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol, 2001,127(4):1682-1693.
pmid: 11743113 |
[60] |
Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I . The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J, 2003,35(5):613-623.
doi: 10.1046/j.1365-313x.2003.01833.x pmid: 12940954 |
[61] |
Jung JH, Seo PJ, Ahn JH , Park CM .Arabidopsis RNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering. J Biol Chem, 2012,287(19):16007-16016.
doi: 10.1074/jbc.M111.337485 pmid: 22431732 |
[62] | Xu J, Hou N, Han N, Bian HW, Zhu MY . The regulatory roles of small RNAs in phytohormone signaling pathways. Hereditas(Beijing), 2016,38(5):418-426. |
许佳, 侯宁, 韩凝, 边红武, 朱睦元 . 小分子RNA在植物激素信号通路中的调控功能. 遗传, 2016,38(5):418-426. | |
[63] |
Wang JW, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsisthaliana. Cell, 2009,138(4):738-749.
doi: 10.1016/j.cell.2009.06.014 pmid: 19703399 |
[64] |
Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS . The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 2009,138(4):750-759.
doi: 10.1016/j.cell.2009.06.031 pmid: 19703400 |
[65] |
Hyun Y, Richter R, Vincent C, Martinez-Gallegos R, Porri A, Coupland G . Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem. Dev Cell, 2016,37(3):254-266.
doi: 10.1016/j.devcel.2016.04.001 pmid: 27134142 |
[66] |
Park J, Oh DH, Dassanayake M, Nguyen KT, Ogas J, Choi G, Sun TP . Gibberellin signaling requires chromatin remodeler PICKLE to promote vegetative growth and phase transitions. Plant Physiol, 2017,173(2):1463-1474.
doi: 10.1104/pp.16.01471 pmid: 28057895 |
[67] |
Zhang D, Jing YJ, Jiang ZM, Lin RC . The chromatin-remodeling factor PICKLE integrates brassinosteroid and gibberellin signaling during skotomorphogenic growth in Arabidopsis. Plant Cell, 2014,26(6):2472-2485.
doi: 10.1105/tpc.113.121848 |
[68] |
Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D . Specific effects of microRNAs on the plant transcriptome. Dev Cell, 2005,8(4):517-527.
doi: 10.1016/j.devcel.2005.01.018 pmid: 15809034 |
[69] |
Xu ML, Hu TQ, Zhao JF, Park MY, Earley KW, Wu G, Yang L, Poethig RS . Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana. PLoS Genet, 2016,12(8):e1006263.
doi: 10.1371/journal.pgen.1006263 pmid: 27541584 |
[70] |
Yamaguchi N, Winter CM, Wu MF, Kanno Y, Yamaguchi A, Seo M, Wagner D . Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science, 2014,344(6184):638-641.
doi: 10.1126/science.1250498 pmid: 24812402 |
[71] |
Turner JG, Ellis C, Devoto A . The jasmonate signal pathway. Plant Cell, 2002,14(Suppl.):S153-164.
doi: 10.1105/tpc.000679 |
[72] |
Berger S . Jasmonate-related mutants of Arabidopsis as tools for studying stress signaling. Planta, 2002,214(4):497-504.
doi: 10.1007/s00425-001-0688-y pmid: 11925032 |
[73] |
Liu X, Yu CW, Duan J, Luo M, Wang K, Tian G, Cui Y, Wu K . HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable element silencing in Arabidopsis. Plant Physiol, 2012,158(1):119-129.
doi: 10.1104/pp.111.184275 pmid: 21994348 |
[74] |
Yu CW, Liu XC, Luo M, Chen C, Lin XD, Tian G, Lu Q, Cui YH, Wu KQ . HISTONE DEACETYLASE6 interacts with flowering locus D and regulates flowering in Arabidopsis. Plant Physiol, 2011,156(1):173-184.
doi: 10.1104/pp.111.174417 |
[75] |
He YH, Michaels SD, Amasino RM . Regulation of flowering time by histone acetylation in Arabidopsis. Science, 2003,302(5651):1751-1754.
doi: 10.1126/science.1091109 pmid: 14593187 |
[76] |
Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K . The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell, 2001,13(10):2191-2209.
doi: 10.1105/tpc.010192 pmid: 11595796 |
[77] |
Nelson MR, Band LR, Dyson RJ, Lessinnes T, Wells DM, Yang C, Everitt NM, Jensen OE, Wilson ZA . A biomechanical model of anther opening reveals the roles of dehydration and secondary thickening. New Phytol, 2012,196(4):1030-1037.
doi: 10.1111/j.1469-8137.2012.04329.x |
[78] |
Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW . Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development, 2005,132(18):4107-4118.
doi: 10.1242/dev.01955 pmid: 16107481 |
[79] |
Jones-Rhoades MW, Bartel DP . Computational identification of plant micrornas and their targets, including a stress-induced miRNA. Mol Cell, 2004,14(6):787-799.
doi: 10.1016/j.molcel.2004.05.027 pmid: 15200956 |
[80] |
Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C . Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of auxin response factor transcripts and microRNA abundance. Plant Cell, 2009,21(10):3119-3132.
doi: 10.1105/tpc.108.064758 pmid: 19820192 |
[81] |
Zhai QZ, Zhang X, Wu FM, Feng HL, Deng L, Xu L, Zhang M, Wang QM, Li CY . Transcriptional mechanismof jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. Plant Cell, 2015,27(10):2814-2828.
doi: 10.1105/tpc.15.00619 pmid: 26410299 |
[82] |
Dong T, Park Y, Hwang I . Abscisic acid: biosynthesis, inactivation, homoeostasis and signalling. Essays Biochem, 2015,58:29-48.
doi: 10.1042/bse0580029 pmid: 26374885 |
[83] |
Barrero JM, Piqueras P, González-Guzmán M, Serrano R, Rodríguez PL, Ponce MR, Micol JL . A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. J Exp Bot, 2005,56(418):2071-2083.
doi: 10.1093/jxb/eri206 pmid: 15983017 |
[84] |
Liu T, Longhurst AD, Talavera-Rauh F, Hokin SA, Barton MK . The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence. eLife, 2016,5:e13768.
doi: 10.7554/eLife.13768 pmid: 27697148 |
[85] | Conti L, Galbiati M, Tonelli C. ABA and the floral transition. In: Zhang DP, eds. Abscisic acid: metabolism,transport and signaling. Springer, The Netherlands, Dordrecht, 2014, 365-384. |
[86] |
Domagalska MA, Sarnowska E, Nagy F. Davis SJ . Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana. PLoS One, 2010,5(11):e14012.
doi: 10.1371/journal.pone.0014012 pmid: 21103336 |
[87] |
Okuda H, Kihara T, Iwagaki I . Effects of cropping on photosynthesis, dark respiration, leaf ABA concentrationand inflorescence induction in Satsuma mandarin. Engei Gakkai Zasshi, 1995,64(1):9-16.
doi: 10.2503/jjshs.64.9 |
[88] | Li JX, Hu CX, Gao JY, Yue JQ . Research progress in floral mechanism and regulation of Citrus. Chin Fruit, 2012, ( 3):67-70. |
李进学, 胡承孝, 高俊燕, 岳建强 . 柑橘成花机理与调控研究进展. 中国果树, 2012, ( 3):67-70. | |
[89] | Ma L, Li F, Zhang JB, Wu GF, Chen ZQ, Wang XL, Tan YY, Wang QL . Relationship between flower bud differentiation and endogenous hormones in shoot tip of different upland cotton varieties. Jiangsu Agri Sci, 2018,46(16):71-75. |
马亮, 李飞, 张金宝, 吴国峰, 陈宗全, 王晓玲, 谭阳光, 王清连 . 不同陆地棉品种花芽分化与茎尖内源激素的关系. 江苏农业科学, 2018,46(16):71-75. | |
[90] | Cao SY, Zhang JC, Wei LH . Studies on the changes of endogenous hormones in the differentiation period of flower bud in apple trees. J Fruit Sci, 2000,17(4):244-248. |
曹尚银, 张俊昌, 魏立华 . 苹果花芽孕育过程中内源激素的变化. 果树学报, 2000,17(4):244-248. | |
[91] | Huang QW . Chang in endogenous hormone contents in relation to bud differention and on-year or off-year fruiting of longan. J Trop Subtrop Bot, 1996,4(2):58-62. |
黄羌维 . 龙眼内源激素变化和花芽分化及大小年结果的关系. 热带亚热带植物学报, 1996,4(2):58-62. | |
[92] | Guo R, Sun GH . Relatonship of endogenesis hormones and dormancy of bulbs and differentiation of buds of lilies. Liaoning Fore Sci Technol, 2007, ( 5):41-42, 44. |
郭蕊, 孙国惠 . 百合内源激素与鳞茎休眠及花芽分化关系的研究. 辽宁林业科技, 2007, ( 5):41-42, 44. | |
[93] | Lin G Y, Zheng CS, Sun XZ, Wang WL . Effects of photoperiod on floral bud differentiation and contents of endogenous hormones in chrysanthemum. Shandong Agri Sci, 2008, ( 1):35-39. |
林贵玉, 郑成淑, 孙宪芝, 王文莉 . 光周期对菊花花芽分化和内源激素的影响. 山东农业科学, 2008, ( 1):35-39. | |
[94] |
Riboni M, Galbiati M, Tonelli C, Conti L . GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and suppressor of overexpression of constans1. Plant Physiol, 2013,162(3):1706-1719.
doi: 10.1104/pp.113.217729 |
[95] |
Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L . ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. J Exp Bot, 2016,67(22):6309-6322.
doi: 10.1093/jxb/erw384 pmid: 27733440 |
[96] |
Choi H, Hong J, Ha J, Kang J, Kim SY . ABFs, a family of ABA-responsive element binding factors. J Biol Chem, 2000,275(3):1723-1730.
doi: 10.1074/jbc.275.3.1723 pmid: 10636868 |
[97] |
Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K . Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA, 2000,97(21):11632-11637.
doi: 10.1073/pnas.190309197 pmid: 11005831 |
[98] |
Fujii H, Verslues PE, Zhu JK . Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell, 2007,19(2):485-494.
doi: 10.1105/tpc.106.048538 pmid: 17307925 |
[99] |
Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K . Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol, 2009,50(12):2123-2132.
doi: 10.1093/pcp/pcp147 pmid: 19880399 |
[100] |
Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K . Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ, 2014,38(1):35-49.
doi: 10.1111/pce.12351 pmid: 24738645 |
[101] |
Ito S, Song YH, Josephson-Day AR, Miller RJ, Breton G, Olmstead RG, Imaizumi T . Flowering bhlh transcriptional activators control expression of the photoperiodic flowering regulator constans in Arabidopsis. Proc Natl Acad Sci USA, 2012,109(9):3582-3587.
doi: 10.1073/pnas.1118876109 pmid: 22334645 |
[102] |
Wang F, Zhu DM, Huang X, Li S, Gong YN, Yao QF, Fu XD, Fan LM, Deng XW . Biochemical insights on degradation of Arabidopsis DELLA proteins gained from a cell-free assay system. Plant Cell, 2009,21(8):2378-2390.
doi: 10.1105/tpc.108.065433 pmid: 19717618 |
[103] | Yu FF, Xie Q . Ubiquitination modification precisely modulates the ABA signaling pathway in plants. Hereditas(Beijing), 2017,39(8):692-706. |
于菲菲, 谢旗 . 泛素化修饰调控脱落酸介导的信号途径. 遗传, 2017,39(8):692-706. | |
[104] | Zhang X, Garreton V, Chua NH . The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev, 2009,276(13):1532-1543. |
[105] |
Bao SJ, Hua CM, Huang JQ, Cheng P, Gong XM, Shen LS , Yu H,. Molecular basis of natural variation in photoperiodic flowering responses. Dev Cell, 2019, 50(1): 90-101.e3.
doi: 10.1016/j.devcel.2019.05.018 pmid: 31178399 |
[106] |
Wang YP, Li L, Ye TT, Lu YM, Chen X, Wu Y . The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. J Exp Bot, 2013,64(2):675-684.
doi: 10.1093/jxb/ers361 pmid: 23307919 |
[107] |
Shu K, Chen Q, Wu YR, Liu RJ, Zhang HW, Wang SF, Tang SY, Yang WY, Xie Q . ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting ArabidopsisFLOWERING LOCUS C transcription. J Exp Bot, 2016,67(1):195-205.
doi: 10.1093/jxb/erv459 pmid: 26507894 |
[108] |
Johnson PR, Ecker JR . The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet, 1998,32(1):227-254.
doi: 10.1146/annurev.genet.32.1.227 |
[109] |
Frankowski K, Wilmowicz E, Kućko A, Kęsy J, Świeżawska B, Kopcewicz J . Ethylene, auxin, and abscisic acid interactions in the control of photoperiodic flower induction in Pharbitis nil. Biol Plantarum, 2014,58(2):305-310.
doi: 10.1007/s10535-014-0401-1 |
[110] |
Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd NP,. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci USA, 2007,104(15):6484-6489.
doi: 10.1073/pnas.0610717104 pmid: 17389366 |
[111] | Alonso JM, Ecker JR. The ethylene pathway: a paradigm for plant hormone signaling and interaction. Sci STKE, 2001, (70): re1. |
[112] |
Zhou CH, Zhang L, Duan J, Miki B, Wu KQ . HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell, 2005,17(4):1196-1204.
doi: 10.1105/tpc.104.028514 pmid: 15749761 |
[113] |
Mai YX, Wang L, Yang HQ . A gain-of-function mutation in IAA7/AXR2 confers late flowering under short-day light in Arabidopsis. J Integr Plant Biol, 2011,53(6):480-492.
doi: 10.1111/j.1744-7909.2011.01050.x |
[114] |
Jaligot E, Rival A, Beulé T, Dussert S, Verdeil JL . Somaclonal variation in oil palm (Elaeis guineensis Jacq.): the DNA methylation hypothesis. Plant Cell Rep, 2000,19(7):684-690.
doi: 10.1007/s002999900177 |
[115] |
Cheng YF, Zhao YD . A role for auxin in flower development. J Integr Plant Biol, 2007,49(1):99-104.
doi: 10.1111/j.1744-7909.2006.00412.x |
[116] |
Reinhardt D, Mandel T, Kuhlemeier C . Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell, 2000,12(4):507-518.
doi: 10.1105/tpc.12.4.507 pmid: 10760240 |
[117] |
Przemeck GK, Mattsson J, Hardtke CS, Sung ZR, Berleth T . Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta, 1996,200(2):229-237.
doi: 10.1007/BF00208313 pmid: 8904808 |
[118] |
Krizek BA, Eaddy M . AINTEGUMENTA-LIKE6 regulates cellular differentiation in flowers. Plant Mol Biol, 2012,78(3):199-209.
doi: 10.1007/s11103-011-9844-3 |
[119] |
O'Neill DP, Ross JJ,. Auxin regulation of the gibberellin pathway in pea. Plant Physiol, 2002,130(4):1974-1982.
doi: 10.1104/pp.010587 pmid: 12481080 |
[120] |
Frigerio M, Alabadí D, Pérez-Gómez J, García-Cárcel L, Phillips AL, Hedden P, Blázquez MA . Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol, 2006,142(2):553-563.
doi: 10.1104/pp.106.084871 pmid: 16905669 |
[121] |
Fu X, Harberd NP . Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature, 2003,421(6924):740-743.
doi: 10.1038/nature01387 pmid: 12610625 |
[122] |
Perilli S, Moubayidin L, Sabatini S . The molecular basis of cytokinin function. Curr Opin Plant Biol, 2010,13(1):21-26.
doi: 10.1016/j.pbi.2009.09.018 pmid: 19850510 |
[123] |
Jacqmard A, Gadisseur I, Bernier G . Cell division and morphological changes in the shoot apex of Arabidopsis thaliana during floral transition. Ann Bot, 2003,91(5):571-576.
doi: 10.1093/aob/mcg053 pmid: 12646501 |
[124] |
Bartrina I, Otto E, Strnad M, Werner T, Schmülling T . Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell, 2011,23(1):69-80.
doi: 10.1105/tpc.110.079079 |
[125] |
Corbesier L, Prinsen E, Jacqmard A, Lejeune P, Van Onckelen H, Périlleux C, Bernier G . Cytokinin levels in leaves, leaf exudate and shoot apical meristem of Arabidopsis thaliana during floral transition. J Exp Bot, 2003,54(392):2511-2517.
doi: 10.1093/jxb/erg276 pmid: 14512385 |
[126] |
Bernier G, Corbesier L, Périlleux C . The flowering process: on the track of controlling factors in sinapis alba. Russ J Plant Physl, 2002,49(4):445-450.
doi: 10.1023/A:1016343421814 |
[127] |
Meijón M, Cañal M J, Valledor L, Rodríguez R, Feito I . Epigenetic and physiological effects of gibberellin inhibitors and chemical pruners on the floral transition of azalea. Physiol Plant, 2011,141(3):276-288.
doi: 10.1111/j.1399-3054.2010.01430.x pmid: 21077902 |
[128] | Lee TT, Skoog F . Effects of substituted phenols on bud formation and growth of tobacco tissue cultures. Physiol Plantrum, 1965,18(2):386-402. |
[129] |
Cleland CF, Ajami A . Identification of the flower-inducing factor isolated from aphid honeydew as being salicylic acid. Plant Physiol, 1974,54(6):904-906.
doi: 10.1104/pp.54.6.904 pmid: 16658997 |
[130] |
Khurana JP, Cleland CF . Role of salicylic acid and benzoic acid in flowering of a photoperiod-insensitive strain, Lemna paucicostata LP6. Plant Physiol, 1992,100(3):1541-1546.
doi: 10.1104/pp.100.3.1541 pmid: 16653155 |
[131] |
Wada KC, Yamada M, Shiraya T, Takeno K . Salicylic acid and the flowering gene flowering locus T homolog are involved in poor-nutrition stress-induced flowering of Pharbitis nil. J Plant Physiol, 2010,167(6):447-452.
doi: 10.1016/j.jplph.2009.10.006 pmid: 19906461 |
[132] |
Wada KC, Takeno K . Stress-induced flowering. Plant Signal Behav, 2010,5(8):944-947.
doi: 10.4161/psb.5.8.11826 pmid: 20505356 |
[133] |
Martínez C, Pons E, Prats G, León J . Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J, 2004,37(2):209-217.
doi: 10.1046/j.1365-313x.2003.01954.x pmid: 14690505 |
[1] | 曹珉, 徐通达. 双子叶植物顶端弯钩发育的调控机制[J]. 遗传, 2021, 43(8): 723-736. |
[2] | 吕赵劼, 王志浩, 卢淑娴, 刘沛蓉, 田静. 短指(趾)症及指(趾)骨发育的分子调控机制[J]. 遗传, 2019, 41(12): 1073-1083. |
[3] | 刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018, 40(3): 171-185. |
[4] | 许佳, 侯宁, 韩凝, 边红武, 朱睦元. 小分子RNA在植物激素信号通路中的调控功能[J]. 遗传, 2016, 38(5): 418-426. |
[5] | 黄霁月,王玉锋,杨金水. 过表达OsPSK3基因增加水稻叶片叶绿素含量[J]. 遗传, 2010, 32(12): 1281-1289. |
[6] | 陈红霖,王义琴,储成才,李平. 植物非寄主抗性研究进展[J]. 遗传, 2008, 30(8): 977-982. |
[7] | 崔建军,田庚善,田地,曾争. 干扰素信号传导通路与其基因组多态性网络模型的建立[J]. 遗传, 2008, 30(6): 788-794. |
[8] | 林庆光,崔百明,彭明. SERK基因家族的研究进展[J]. 遗传, 2007, 29(6): 681-687. |
[9] | 秘彩莉,刘旭,张学勇. F-box蛋白质在植物生长发育中的功能[J]. 遗传, 2006, 28(10): 1337-1205. |
[10] | 庄伟建. 隐光敏素及其信号传导研究进展[J]. 遗传, 2005, 27(2): 225-334. |
[11] | 王海霞,朱大海. Smad及其结合蛋白在TGF β信号传导中的功能[J]. 遗传, 2003, 25(4): 479-483. |
[12] | 程震龙,朱大海,张志谦,. MEF2与肌肉发生 [J]. 遗传, 2002, 24(5): 581-585. |
[13] | 潘建伟,陈虹,顾青,朱睦元. 环境胁迫诱导的植物细胞程序性死亡[J]. 遗传, 2002, 24(3): 385-388. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: