[1] | Briat JF, Lebrun M. Plant responses to metal toxicity. C R Acad Sci III, 1999, 322(1): 43-54. | [2] | R?emheld V, Marschner H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol, 1986, 80(1): 175-180. | [3] | Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. Rice plants take up iron as an Fe 3+-phytosiderophore and as Fe 2+. Plant J, 2006, 45(3): 335-346. | [4] | FAO/AGL. Extent and causes of salt affected soils in participating countries. 2000. Rome, Italy. | [5] | Wang ZQ, Zhu SQ, Yu RP. Chinese saline soil. Beijing: Science Press, 1993: 217-227. | [5] | 王遵亲, 祝寿泉, 俞仁培. 中国盐渍土. 北京: 科学出版社, 1993: 217-227. | [6] | Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S. Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol, 2001, 19(5): 466-469. | [7] | Takizawa R, Nishizawa NK, Nakanishi H, Mori S. Effect of iron deficiency on S-adenosylmethionine synthetase in barley roots. J Plant Nutr, 1996, 19(8-9): 1189-1200. | [8] | Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol, 1999, 119(2): 471-480. | [9] | Okumura N, Nishizawa NK, Umehara Y, Ohata T, Nakanishi H, Yamaguchi T, Chino M, Mori S. A dioxygenase gene (Ids2) expressed under iron deficiency conditions in the roots of Hordeum vulgare. Plant Mol Biol, 1994, 25(4): 705-719. | [10] | Nakanishi H, Okumura N, Umehara Y, Nishizawa NK, Chino M, Mori S. Expression of a gene specific for iron deficiency (Ids3) in the roots of Hordeum vulgare. Plant Cell Physiol, 1993, 34(3): 401-410. | [11] | Nakanishi H, Yamaguchi H, Sasakuma T, Nishizawa NK, Mori S. Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol Biol, 2000, 44(2): 199-207. | [12] | Kobayashi T, Nakanishi H, Takahashi M, Kawasaki S, Nishizawa NK, Mori S. In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2’-deoxymugineic acid to mugineic acid in transgenic rice. Planta, 2001, 212(5): 864-871. | [13] | Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem, 2011, 286(7): 5446-5454. | [14] | Nozoye T, Nagasaka S, Kobayashi T, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK. The phytosiderophore efflux transporter TOM2 is involved in metal transport in rice. J Biol Chem, 2015, 290(46): 27688-27699. | [15] | Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J, 2003, 36(3): 366-381. | [16] | Cheng LJ, Wang F, Shou HX, Huang FL, Zheng LQ, He F, Li JH, Zhao FJ, Ueno D, Ma JF, Wu P. Mutation in nicotianamine aminotransferase stimulated the Fe(II) acquisition system and led to iron accumulation in rice. Plant Physiol, 2007, 145(4): 1647-1657. | [17] | Inoue H, Takahashi M, Kobayashi T, Suzuki M, Nakanishi H, Mori S, Nishizawa NK. Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol Biol, 2008, 66(1-2): 193-203. | [18] | Suzuki M, Morikawa KC, Nakanishi H, Takahashi M, Saigusa M, Mori S, Nishizawa NK. Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil. Soil Sci Plant Nutr, 2008, 54(1): 77-85. | [19] | Lee S, Kim YS, Jeon US, Kim YK, Schjoerring JK, An G. Activation of rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. Mol Cell, 2012, 33(3): 269-275. | [20] | Ogo Y, Itai RN, Kobayashi T, Aung MS, Nakanishi H, Nishizawa NK. OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol Biol, 2011, 75(6): 593-605. | [21] | Fourcroy P, Sisó-Terraza P, Sudre D, Sabirón M, Reyt G, Gaymard F, Abadía A, Abadía J, álvarez-Fernández A, Briat JF. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol, 2014, 201(1): 155-167. | [22] | Schmid NB, Giehl RFH, D?ll S, Mock HP, Strehmel N, Scheel D, Kong XL, Hider RC, von Wirén N. Feruloyl- CoA 6°-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiol, 2014, 164(1): 160-172. | [23] | Ishimaru Y, Kakei Y, Shimo H, Bashir K, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK. A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. J Biol Chem, 2011, 286(28): 24649-24655. | [24] | Bashir K, Ishimaru Y, Shimo H, Kakei Y, Senoura T, Takahashi R, Sato Y, Sato Y, Uozumie N, Nakanishi H, Nishizawa NK. Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron. Soil Sci Plant Nutr, 2011, 57(6): 803-812. | [25] | Ogo Y, Kakei Y, Itai RN, Kobayashi T, Nakanishi H, Takahashi H, Nakazono M, Nishizawa NK. Spatial transcriptomes of iron-deficient and cadmium-stressed rice. New Phytol, 2014, 201(3): 781-794. | [26] | Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J, 2004, 39(3): 415-424. | [27] | Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G. Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol, 2009, 150(2): 786-800. | [28] | Kakei Y, Ishimaru Y, Kobayashi T, Yamakawa T, Nakanishi H, Nishizawa NK. OsYSL16 plays a role in the allocation of iron. Plant Mol Biol, 2012, 79(6): 583-594. | [29] | Aoyama T, Kobayashi T, Takahashi M, Nagasaka S, Usuda K, Kakei Y, Ishimaru Y, Nakanishi H, Mori S, Nishizawa NK. OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Mol Biol, 2009, 70(6): 681-692. | [30] | Gómez-Galera S, Sudhakar D, Pelacho AM, Capell T, Christou P. Constitutive expression of a barley Fe phytosiderophore transporter increases alkaline soil tolerance and results in iron partitioning between vegetative and storage tissues under stress. Plant Physiol Biochem, 2012, 53: 46-53. | [31] | Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S. Cloning an iron-regulated metal transporter from rice. J Exp Bot, 2002, 53(374): 1677-1682. | [32] | Lee S, An G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ, 2009, 32(4): 408-416. | [33] | Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot, 2011, 62(14): 4843-4850. | [34] | Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep, 2012, 2: 286. | [35] | Sasaki A, Yamaji N, Yokosho K, Ma JF. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell, 2012, 24(5): 2155-2167. | [36] | Kobayashi T, Itai RN, Nishizawa NK. Iron deficiency responses in rice roots. Rice, 2014, 7: 27. | [37] | Ishimaru Y, Kim S, Tsukamoto T, Oki H, Kobayashi T, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc Natl Acad Sci USA, 2007, 104(18): 7373-7378. | [38] | Ogo Y, Itai RN, Nakanishi H, Inoue H, Kobayashi T, Suzuki M, Takahashi M, Mori S, Nishizawa NK. Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot, 2006, 57(11): 2867-2878. | [39] | Ogo Y, Itai RN, Nakanishi H, Kobayashi T, Takahashi M, Mori S, Nishizawa NK. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J, 2007, 51(3): 366-377. | [40] | Zheng LQ, Ying YH, Wang L, Wang F, Whelan J, Shou HX. Identification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa. BMC Plant Biol, 2010, 10: 166. | [41] | Wang L, Ying YH, Narsai R, Ye LX, Zheng LQ, Tian JL, Whelan J, Shou HX. Identification of OsbHLH133 as a regulator of iron distribution between roots and shoots in Oryza sativa. Plant Cell Environ, 2013, 36(1): 224-236. | [42] | Kobayashi T, Ogo Y, Itai RN, Nakanishi H, Takahashi M, Mori S, Nishizawa NK. The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. Proc Natl Acad Sci USA, 2007, 104(48): 19150-19155. | [43] | Ogo Y, Kobayashi T, Itai RN, Nakanishi H, Kakei Y, Takahashi M, Toki S, Mori S, Nishizawa NK. A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J Biol Chem, 2008, 283(19): 13407-13417. | [44] | Kobayashi T, Itai RN, Ogo Y, Kakei Y, Nakanishi H, Takahashi M, Nishizawa NK. The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes. Plant J, 2009, 60(6): 948-961. | [45] | Kobayashi T, Ogo Y, Aung MS, Nozoye T, Itai RN, Nakanishi H, Yamakawa T, Nishizawa NK. The spatial expression and regulation of transcription factors IDEF1 and IDEF2. Ann Bot, 2010, 105(7): 1109-1117. | [46] | Kobayashi T, Nishizawa NK. Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol, 2012, 63(1): 131-152. | [47] | Kobayashi T, Nagasaka S, Senoura T, Itai RN, Nakanishi H, Nishizawa NK. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat Commun, 2013, 4: 2792. | [48] | Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF. OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol, 2009, 149(1): 297-305. | [49] | Ishimaru Y, Bashir K, Fujimoto M, An G, Itai RN, Tsutsumi N, Nakanishi H, Nishizawa NK. Rice-specific mitochondrial iron-regulated gene (MIR) plays an important role in iron homeostasis. Mol Plant, 2009, 2(5): 1059-1066. | [50] | Bashir K, Ishimaru Y, Shimo H, Nagasak S, Fujimoto M, Takanashi H, Tsutsumi N, An G, Nakanishi H, Nishizawa NK. The rice mitochondrial iron transporter is essential for plant growth. Nat Commun, 2011, 2: 322. | [51] | Vigani G, Bashir K, Ishimaru Y, Lehmann M, Casiraghi FM, Nakanishi H, Seki M, Geigenberger P, Zocchi G, Nishizawa NK. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants. J Exp Bot, 2016, 67(5): 1357-1368. | [52] | Zhang Y, Xu YH, Yi HY, Gong JM. Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between ?ag leaves and seeds in rice. Plant J, 2012, 72(3): 400-410. | [53] | Bashir K, Takahashi R, Akhtar S, Ishimaru Y, Nakanishi H, Nishizawa NK. The knockdown of OsVIT2 and MIT affects iron localization in rice seed. Rice, 2013, 6(1): 31. | [54] | Zhang X, Wei LQ, Wang ZZ, Wang T. Physiological and molecular features of Puccinellia tenuiflora tolerating salt and alkaline-salt stress. J Integr Plant Biol, 2013, 55(3): 262-276. | [55] | Sun YP, Wang FW, Wang N, Dong YY, Liu Q, Zhao L, Chen H, Liu WC, Yin HL, Zhang XM, Yuan YX, Li HY. Transcriptome exploration in Leymus chinensis under saline-alkaline treatment using 454 pyrosequencing. PLoS One, 2013, 8(1): e53632. | [56] | Wang C, Gao CQ, Wang LQ, Zheng L, Yang CP, Wang YC. Comprehensive transcriptional profiling of NaHCO3- stressed Tamarix hispida roots reveals networks of responsive genes. Plant Mol Biol, 2014, 84(1-2): 145-157. |
|