[1] Schmidt W. Iron solutions: acquisition strategies and signaling pathways in plants. Trends Plant Sci , 2003, 8(4): 188-193. [2] Yin LP, Huang QN, Wu P. Plant nutrition molecular biology and signal transduction. Beijing: Science Press, 2006. 印莉萍, 黄勤妮, 吴平. 植物营养分子生物学及信号转导. 北京: 科学出版社, 2006. [3] Mori S. Iron acquisition by plants. Curr Opin Plant Biol , 1999, 2(3): 250-253. [4] Mori S, Nishizawa NK. Methionine as a dominant precursor of phytosiderophores in Graminaceae plants. Plant Cell Physiol , 1987, 28(6): 1081-1092. [5] Nozoye T, Inoue H, Takahashi M, Ishimaru Y, Nakanishi H, Mori S, Nishizawa NK. The expression of iron homeostasis-related genes during rice germination. Plant Mol Biol , 2007, 64(1-2): 35-47. [6] Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem , 2011, 286(7): 5446-5454. [7] Nozoye T, Nakanishi H, Nishizawa NK. Characterizing the crucial components of iron homeostasis in the maize mutants ys1 and ys3. PLoS One , 2013, 8(5): e62567. [8] Li Y, Wang N, Zhao FT, Song XJ, Yin ZH, Huang R, Zhang CQ. Changes in the transcriptomic profiles of maize roots in response to iron-deficiency stress. Plant Mol Biol , 2014, 85(4-5): 349-363. [9] Marschner H, Römheld V. Strategies of plants for acquisition of iron. Plant Soil , 1994, 165(2): 261-274. [10] Neumann G. Root exudates and nutrient cycling. In: Marschner P, Rengel Z, eds. Nutrient Cycling in Terrestrial Ecosystems. Berlin Heidelberg: Springer, 2007: 123-157. [11] Dong BX. Association analysis between mugineic acid release character and SSR markers in seedling stage of maize inbred lines[Dissertation]. Tai’an: Shandong Agricultural University, 2012. 董炳雪. 玉米自交系苗期麦根酸分泌特性及其与SSR标记的关联分析[学位论文]. 泰安: 山东农业大学, 2012. [12] Wei CH, Li Y. The extraction of total DNA of plants. In: Wei CH, Li Y, eds. Modern Molecular Biology Technology. Beijing: Higher Education Press, 2006. 魏春红, 李毅. 植物总DNA的提取. 见: 魏春红, 李毅. 现代分子生物学实验技术. 北京: 高等教育出版社, 2006. [13] Hofen R, Willmitzer L. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res , 1988, 16(20): 9877. [14] Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana . Plant J , 1998, 16(6): 735-743. [15] Wen DX. Studies on rapid testing genetic purity of maize seeds with molecular technique[Dissertation]. Tai’an: Shandong Agricultural University, 2013. 温大兴. 玉米种子纯度快速分子检测技术研究[学位论文]. 泰安: 山东农业大学, 2013. [16] Jefferson RA. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Bio Rep , 1987, 5(4): 387-405. [17] Li F. Test process to investigate of paraffin section of the plant. Sci Technol Inf , 2012, (5): 104-105. 李峰. 植物石蜡切片制作( paraffin section ) 的试验流程探讨. 科技信息, 2012, (5): 104-105. [18] Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis . Plant Physiol , 2010, 154(2): 810-819. [19] Graziano M, Lamattina L. Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Plant J , 2007, 52(5): 949-960. [20] Jin CW, Du ST, Chen WW, Li GX, Zhang YS, Zheng SJ. Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato. Plant Physiol , 2009, 150(1): 272-280. [21] Maurer F, Müller S, Bauer P. Suppression of Fe deficiency gene expression by jasmonate. Plant Physiol Biochem , 2011, 49(5): 530-536. [22] Séguéla M, Briat JF, Vert G, Curie C. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway. Plant J , 2008, 55(2) |