[1] Gupta S, Bhushan B, Hoondal GS. Isolation, purification and characterization of xylanase from Staphylococcus sp. SG-13 and its application in biobleaching of kraft pulp. J Appl Microbiol, 2000, 88(2): 325-334.[2] Ziaie-Shirkolaee Y, Talebizadeh A, Soltanali S. Comparative study on application of T. lanuginosus SSBP xylanase and commercial xylanase on biobleaching of non wood pulps. Bioresource Technol, 2008, 99(16): 7433-7437.[3] Hew LI, Ravindran V, Mollah Y, Bryden WL. Influence of exogenous xylanase supplementation on apparent metabolisable energy and amino acid digestibility in wheat for broiler chickens. Anim Feed Sci Tech, 1998, 75(2): 83-92.[4] Almirall M, Francesch M, Perez-Vendrell AM, Brufau J, Esteve-Garcia E. The differences in intestinal viscosity produced by barley and beta-glucanase alter digesta en-zyme activities and ileal nutrient digestibilities more in broiler chicks than in cocks. J Nutr, 1995, 125(4): 947-955.[5] Choct M, Annison G. Anti-nutritive effect of wheat pen-tosans in broiler chickens: roles of viscosity and gut mi-croflora. Br Poult Sci, 1992, 33(4): 821-834.[6] Inborr J, Puhakka J, Bakker JGM, van der Meulen J. β-glucanase and xylanase activities in stomach and ileum of growing pigs fed wheat bran based diets with and without enzyme treatment. Arch Tierernahr, 1999, 52(3): 263-274.[7] Romanowska I, Polak J, Bielecki S. Isolation and properties of Aspergillus niger IBT-90 xylanase for bakery. Appl Microbiol Biotechnol, 2006, 69(6): 665-671.[8] Autio K, Härkönen H, Parkkonen T, Frigård T, Poutanen K, Siikaaho M, Åman P. Effects of purified endo-β- xy-lanase and endo-β-glucanase on the structural and baking characteristics of rye doughs. Food Sci Technol, 1996, 29(1-2): 18-27.[9] Camacho NA, Aguilar OG. Production, purification, and characterization of a low-molecular-mass xylanase from Aspergillus sp. and its application in baking. Appl Biochem Biotech, 2003, 104(3): 159-171.[10] Bailey MJ, Biely P, Poutanen K. Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol, 1992, 23(3): 257-270.[11] Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959, 31(3): 426-428.[12] Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ri-bosomal DNA amplification for phylogenetic study. J Bacteriol, 1991, 173(2): 697-703.[13] von Wintzingerode F, Göbel UB, Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev, 1997, 21(3): 213-229.[14] Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong SX, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ, SARS Working Group. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med, 2003, 348(20): 1953-1966.[15] 李业. 谷氨酰胺合成酶的表达、纯化、酶学性质及腺苷化现象的研究[学位论文]. 北京: 清华大学, 2009.[16] Liu D, Schmid RD, Rusnak M. Functional expression of Candida antarctica lipase B in the Escherichia coli cytoplasm-a screening system for a frequently used biocatalyst. Appl Microbiol Biotechnol, 2006, 72(5): 1024-1032.[17] Wang J, Zhang WW, Liu JN, Cao YL, Bai XT, Gong YS, Cen PL, Yang MM. An alkali-tolerant xylanase produced by the newly isolated alkaliphilic Bacillus pumilus from paper mill effluent. Mol Biol Rep, 2010, 37(7): 3297-3302.[18] Turunen O, Vuorio M, Fenel F, Leisola M. Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1, 4-β-xylanase II increases the thermotolerance and shifts the pH optimum towards alkaline pH. Protein Eng, 2002, 15(2): 141-145.[19] Masui A, Fujiwara N, Imanaka T. Stabilization and rational design of serine protease AprM under highly alka-line and high-temperature conditions. Appl Environ Microbiol, 1994, 60(10): 3579-3584.[20] Mrabet NT, van den Broeck A, Van den Brande I, Stanssens P, Laroche Y, Lambeir AM, Matthijssens G, Jenkins J, Chiadmi M, van Tilbeurgh H, Rey F, Janin J, Quax WJ, Lasters I, Maeyer MD, Wodak SJ. Arginine residues as stabilizing elements in proteins. Biochem, 1992, 31(8): 2239-2253.[21] Shirai T, Suzuki A, Yamane T, Ashida T, Kobayashi T, Hitomi J, Ito S. High-resolution crystal structure of M-protease: phylogeny aided analysis of the high-alkaline adaptation mechanism. Protein Eng, 1997, 10(6): 627-634.[22] Mamo G, Hatti-Kaul R, Mattiasson B. A thermostable al-kaline active endo-β-1-4-xylanase from Bacillus halodurans S7: purification and characterization. Enzyme Microb Tech, 2006, 39(7): 1492-1498.[23] Pérez-Avalos O, Sánchez-Herrera LM, Salgado LM, Ponce-Noyola T. A bifunctional endoglucanase/endoxylanase from Cellulomonas flavigena with potential use in industrial processes at different pH. Curr Microbiol, 2008, 57(1): 39-44.[24] Maalej I, Belhaj I, Masmoudi NF, Belghith H. Highly Thermostable xylanase of the thermophilic fungus Talaromyces thermophilus: purification and characterizetion. Appl Biochem Biotech, 2009, 158(1): 200-212.[25] Bourgois TM, Nguyen DV, Sansen S, Rombouts S, Beliën T, Fierens K, Raedschelders G, Rabijns A, Courtin CM, Delcour JA, Van Campenhout S, Volckaert G. Targeted molecular engineering of a family 11 endoxylanase to decrease its sensitivity towards Triticum aestivum endoxylanase inhibitor types. J Biotechnol, 2007, 130(1): 95-105.[26] Damiano VB, Ward R, Gomes E, Alves-Prado HF, Da Silva R. Purification and characterization of two xylanases from alkalophilic and thermophilic Bacillus licheniformis 77-2. Appl Biochem Biotech, 2006, 129(1-3): 289-302.[27] Manikandan K, Bhardwaj A, Gupta N, Lokanath NK, Ghosh A, Reddy VS, Ramakumar S. Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27: structural insights into alkalophilicity and implications for adaptation to polyextreme conditions. Protein Sci, 2006, 15(8): 1951-1960.[28] Li N, Shi PJ, Yang PL, Wang YR, Luo HY, Bai YG, Zhou ZG, Yao B. Cloning, expression, and characterization of a new Streptomyces sp. S27 xylanase for which xylobiose is the main hydrolysis product. Appl Biochem Biotech, 2009, 159(2): 521-531.[29] Dutta T, Sengupta R, Sahoo R, Sinha Ray S, Bhattacharjee A, Ghosh S. A novel cellulase free alkaliphilic xylanase from alkali tolerant Penicillium citrinum: production, purification and characterization. Lett Appl Microbiol, 2007, 44(2): 206-211.[30] Feller G, Arpigny JL, Narinx E, Gerday CH. Molecular adaptations of enzymes from psychrophilic organisms. Comp Biochem Physiol, 1997, 118(3): 495-499.[31] Shi PJ, Tian J, Yuan TZ, Liu X, Huang HQ, Bai YG, Yang PL, Chen XY, Wu NF, Yao B. Paenibacillus sp. Strain E18 bifunctional xylanase-glucanase with a single catalytic domain. Appl Environ Microb, 2010, 76(11): 3620-3624. |