[1] | Qi X, Cui C, Peng Y, Zhang X, Yang Z, Zhong H, Zhang H, Xiang K, Cao X, Wang Y, Ouzhuluobu, Basang, Ciwangsangbu, Bianba, Gonggalanzi, Wu T, Chen H, Shi H, Su B . Genetic evidence of paleolithic colonization and neolithic expansion of modern humans on the tibetan plateau. Mol Biol Evol, 2013,30(8):1761-1778. | [2] | Taylor AT . High-altitude illnesses: physiology, risk factors, prevention, and treatment. Rambam Maimonides Med J, 2011,2(1):e0022. | [3] | Beall CM . Two routes to functional adaptation: tibetan and Andean high-altitude natives. Proc Natl Acad Sci USA, 2007,104(Suppl. 1):8655-8660. | [4] | Majmundar AJ, Wong WJ, Simon MC . Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell, 2010,40(2):294-309. | [5] | Beall CM . Tibetan and andean patterns of adaptation to high-altitude hypoxia. Hum Biol, 2000,72(1):201-228. | [6] | Ren Y, Fu Z, Shen W, Jiang P, He Y, Peng S, Wu Z, Cui B . Incidence of high altitude illnesses among unacclimatized persons who acutely ascended to tibet. High Alt Med Biol, 2010,11(1):39-42. | [7] | Jiang C, Chen J, Liu F, Luo Y, Xu G, Shen HY, Gao Y, Gao W . Chronic mountain sickness in Chinese Han males who migrated to the Qinghai-Tibetan plateau: application and evaluation of diagnostic criteria for chronic mountain sickness. BMC Public Health, 2014,14:701. | [8] | Wu TY . Chronic mountain sickness on the Qinghai- Tibetan plateau. Chin Med J, 2005,118(2):161-168. | [9] | Wu TY, Ding SQ, Liu JL, Yu MT, Jia JH, Duan JQ, Chai ZC, Dai RC, Zhang SL, Liang BZ, Zhao JZ, Qi de T, Sun YF, Kayser B . Reduced incidence and severity of acute mountain sickness in Qinghai-Tibet railroad construction workers after repeated 7-month exposures despite 5-month low altitude periods. High Alt Med Biol, 2009,10(3):221-232. | [10] | Moore LG . Human genetic adaptation to high altitude. High Alt Med Biol, 2001,2(2):257-279. | [11] | Wu T, Kayser B . High altitude adaptation in tibetans. High Alt Med Biol, 2006,7(3):193-208. | [12] | Grocott M, Montgomery H . Genetophysiology: using genetic strategies to explore hypoxic adaptation. High Alt Med Biol, 2008,9(2):123-129. | [13] | Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, Prchal JT, Ge R . Genetic evidence for high-altitude adaptation in tibet. Science, 2010,329(5987):72-75. | [14] | Xu S, Li S, Yang Y, Tan J, Lou H, Jin W, Yang L, Pan X, Wang J, Shen Y, Wu B, Wang H, Jin L . A genome-wide search for signals of high-altitude adaptation in tibetans. Mol Biol Evol, 2011,28(2):1003-1011. | [15] | Li Q, Liu SY, Lin KQ, Sun H, Yu L, Huang XQ, Chu JY, Yang ZQ . Association between six single nucleotide polymorphisms of EGLN1 gene and adaptation to high- altitude hypoxia. Hereditas(Beijing), 2013,35(8):992-998. | [15] | 李骞, 刘舒媛, 林克勤, 孙浩, 于亮, 黄小琴, 褚嘉祐, 杨昭庆 . EGLN1基因6个单核苷酸多态性与高海拔低氧适应的相关性. 遗传, 2013,35(8):992-998. | [16] | Wang DZ, Li S, Hockemeyer D, Sutherland L, Wang Z, Schratt G, Richardson JA, Nordheim A, Olson EN . Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc Natl Acad Sci USA, 2002,99(23):14855-14860. | [17] | Cen B, Selvaraj A, Burgess RC, Hitzler JK, Ma Z, Morris SW, Prywes R . Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes. Mol Cell Biol, 2003,23(18):6597-6608. | [18] | Kuwahara K, Kinoshita H, Kuwabara Y, Nakagawa Y, Usami S, Minami T, Yamada Y, Fujiwara M, Nakao K . Myocardin-related transcription factor A is a common mediator of mechanical stress- and neurohumoral stimulation-induced cardiac hypertrophic signaling leading to activation of brain natriuretic peptide gene expression. Mol Cell Biol, 2010,30(17):4134-4148. | [19] | Small EM, Thatcher JE, Sutherland LB, Kinoshita H, Gerard RD, Richardson JA, Dimaio JM, Sadek H, Kuwahara K, Olson EN . Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction. Circ Res, 2010,107(2):294-304. | [20] | Yuan Z, Chen J, Chen D, Xu G, Xia M, Xu Y, Gao Y . Megakaryocytic leukemia 1 (MKL1) regulates hypoxia induced pulmonary hypertension in rats. PLoS One, 2014,9(3):e83895. | [21] | Fang F, Yang Y, Yuan Z, Gao Y, Zhou J, Chen Q, Xu Y . Myocardin-related transcription factor A mediates OxLDL- induced endothelial injury. Circ Res, 2011,108(7):797-807. | [22] | Marsden PA, Heng HH, Scherer SW, Stewart RJ, Hall AV, Shi XM, Tsui LC, Schappert KT . Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem, 1993,268(23):17478-17488. | [23] | Droma Y, Hanaoka M, Ota M, Katsuyama Y, Koizumi T, Fujimoto K, Kobayashi T, Kubo K . Positive association of the endothelial nitric oxide synthase gene polymorphisms with high-altitude pulmonary edema. Circulation, 2002,106(7):826-830. | [24] | Sun YJ, Ming-wu F, Wen-quan N, Guang-ping L, Jing-liang L, Shou-quan D, Ying X, Guo-shu Y, Jian-qun D, Yun-jun P, Wei-ya D, Tian W, Jing-wen C, Xiao-bo L, Zhong-xiang W, Guang-Xue Y, Hui-cheng S, Zhong-hou J, Jun L, Xiao-ming W, Qin S, Qi-xia W, Wen-yu Z, Tong-chun Z, Chang-chun Q . Endothelial nitric oxide synthase gene polymorphisms associated with susceptibility to high altitude pulmonary edema in Chinese railway construction workers at Qinghai-Tibet over 4 500 meters above sea level. Chin Med Sci J, 2010,25(4):215-221. | [25] | Ahsan A, Norboo T, Baig MA, Qadar Pasha MA . Simultaneous selection of the wild-type genotypes of the G894T and 4B/ 4A polymorphisms of NOS3 associate with high-altitude adaptation. Ann Hum Genet, 2005,69(Pt 3):260-267. | [26] | Wang QQ, Yu L, Huang GR, Zhang L, Liu YQ, Wang TW, Lin H, Ren Q, Liu P, Huang L, Qin J, Wu GM, Li QN, Li YF, Xiong HY . Polymorphisms of angiotensin converting enzyme and nitric oxide synthase 3 genes as risk factors of high-altitude pulmonary edema: a case-control study and meta-analysis. Tohoku J Exp Med, 2013,229(4):255-266. | [27] | Ahsan A, Mohd G, Norboo T, Baig MA, Pasha MA . Heterozygotes of NOS3 polymorphisms contribute to reduced nitrogen oxides in high-altitude pulmonary edema. Chest, 2006,130(5):1511-1519. | [28] | Zhang H, Chamba Y, Zhao CJ, Bao HG, Ling Y, Wu CX . Function of inducible nitric oxide synthase on adaptability to hypoxia in Tibetan chicken. Hereditas(Beijing), 2009,31(4):400-406. | [28] | 张浩, 强巴央宗, 赵春江, 鲍海港, 凌遥, 吴常信 . 藏鸡诱导型一氧化氮合酶基因低氧适应功能分析. 遗传, 2009,31(4):400-406. | [29] | Yang Y, Chen D, Yuan Z, Fang F, Cheng X, Xia J, Fang M, Xu Y, Gao Y . Megakaryocytic leukemia 1 (MKL1) ties the epigenetic machinery to hypoxia-induced transactivation of endothelin-1. Nucleic Acids Res, 2013,41(12):6005-6017. | [30] | Goerre S, Wenk M, Bärtsch P, Lüscher TF, Niroomand F, Hohenhaus E, Oelz O, Reinhart WH . Endothelin-1 in pulmonary hypertension associated with high-altitude exposure. Circulation, 1995,91(2):359-364. | [31] | Jankowich MD, Wu WC, Choudhary G . Association of elevated plasma Endothelin-1 levels with pulmonary hypertension, mortality, and heart failure in africanamerican individuals: the jackson heart study. JAMA Cardiol, 2016,1(4):461-469. | [32] | Shao D, Park JE, Wort SJ . The role of endothelin-1 in the pathogenesis of pulmonary arterial hypertension. Pharmacol Res, 2011,63(6):504-511. | [33] | Modesti PA, Vanni S, Morabito M, Modesti A, Marchetta M, Gamberi T, Sofi F, Savia G, Mancia G, Gensini GF, Parati G . Role of endothelin-1 in exposure to high altitude: acute mountain sickness and Endothelin-1 (ACME-1) study. Circulation, 2006,114(13):1410-1416. | [34] | Yang J, Jin ZB, Chen J, Huang XF, Li XM, Liang YB, Mao JY, Chen X, Zheng Z, Bakshi A, Zheng DD, Zheng MQ, Wray NR, Visscher PM, Lu F, Qu J . Genetic signatures of high-altitude adaptation in tibetans. Proc Natl Acad Sci USA, 2017,114(16):4189-4194. | [35] | Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ . Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet, 2010,6(4):e1000888. | [36] | Pugliese SC, Kumar S, Janssen WJ, Graham BB, Frid MG, Riddle SR, El Kasmi KC, Stenmark KR . A Time- and Compartment-Specific activation of lung macrophages in hypoxic pulmonary hypertension. J Immunol, 2017,198(12):4802-4812. | [37] | Subudhi AW, Bourdillon N, Bucher J, Davis C, Elliott JE, Eutermoster M, Evero O, Fan JL, Jameson-Van Houten S, Julian CG, Kark J, Kark S, Kayser B, Kern JP, Kim SE, Lathan C, Laurie SS, Lovering AT, Paterson R, Polaner DM, Ryan BJ, Spira JL, Tsao JW, Wachsmuth NB, Roach RC . AltitudeOmics: the integrative physiology of human acclimatization to hypobaric hypoxia and its retention upon reascent. PLoS One, 2014,9(3):e92191. | [38] | Balloux F, Lugon-Moulin N . The estimation of population differentiation with microsatellite markers. Mol Ecol, 2002,11(2):155-165. | [39] | Peng Y, Yang Z, Zhang H, Cui C, Qi X, Luo X, Tao X, Wu T, Ouzhuluobu, Basang, Ciwangsangbu, Danzengduojie, Chen H, Shi H, Su B . Genetic variations in Tibetan populations and high-altitude adaptation at the himalayas. Mol Biol Evol, 2011,28(2):1075-1081. |
|