遗传 ›› 2020, Vol. 42 ›› Issue (5): 452-465.doi: 10.16288/j.yczz.19-287
田菁1,2, 王宇哲1,2,3(), 闫世雄4, 孙帅4, 贾俊静4, 胡晓湘1,2()
收稿日期:
2019-11-04
修回日期:
2020-03-13
出版日期:
2020-05-20
发布日期:
2020-04-01
通讯作者:
王宇哲,胡晓湘
E-mail:yuzhe891@163.com;huxx@cau.edu.cn
作者简介:
田菁,在读博士研究生,专业方向:动物遗传育种。E-mail: 18604841591@163.com
基金资助:
Jing Tian1,2, Yuzhe Wang1,2,3(), Shixiong Yan4, Shuai Sun4, Junjing Jia4, Xiaoxiang Hu1,2()
Received:
2019-11-04
Revised:
2020-03-13
Online:
2020-05-20
Published:
2020-04-01
Contact:
Wang Yuzhe,Hu Xiaoxiang
E-mail:yuzhe891@163.com;huxx@cau.edu.cn
Supported by:
摘要:
代谢组学是依赖灵敏、稳定的分析流程和数据库,利用色谱-质谱联用、核磁共振技术对生物体内以及生物样品所有的小分子代谢物进行鉴定和定量分析的学科,在医学、食品科学、畜牧学、植物学等领域得到广泛应用。代谢组学方法可将代谢物种类和含量的变化与生物表型变化建立更直接的联系,因此代谢组学逐渐成为继基因组学、转录组学、蛋白组学后对复杂性状系统解析的新的研究手段。本文介绍了代谢组学常用分析策略、检测平台和常用数据库。在此基础上,综述了代谢组学在农业动物重要经济性状代谢分子鉴定、疾病诊断、肉品质及动物制品安全检测等领域取得的进展,并总结了利用代谢组学、转录组学和基因组学等多组学研究在动植物重要性状的发育、形成和解析等领域取得的最新成果。代谢组学与其他多组学方法整合分析,可以更全面地阐述各类复杂性状的遗传机制,有助于完善“突变-基因-表达-代谢-表型”的完整生物学过程,为复杂性状的机理解析提供新方法,为新型农业育种提供新思路。
田菁, 王宇哲, 闫世雄, 孙帅, 贾俊静, 胡晓湘. 代谢组学技术发展及其在农业动植物研究中的应用[J]. 遗传, 2020, 42(5): 452-465.
Jing Tian, Yuzhe Wang, Shixiong Yan, Shuai Sun, Junjing Jia, Xiaoxiang Hu. Metabolomics technology and its applications in agricultural animal and plant research[J]. Hereditas(Beijing), 2020, 42(5): 452-465.
表1
不同高分辨质谱仪性能特点"
质谱名称 | 检测质量范围 (质荷比: m/z,单位: Da) | 分辨率 | 优点 | 缺点 |
---|---|---|---|---|
傅里叶变换离子回旋 共振质谱 (Fourier transform Ion cyclotron resonance, FT-ICR MS) | 100~10,000 | 100,000~1,000,000以上 | 分辨率和灵敏度最高 | 仪器体积大; 售价高; 维护费用昂贵; 扫描速度慢 |
静电场轨道阱质谱 (Orbitrap-MS) | LC-MS 50~6000 GC-MS 30~3000 | 140,000(在m/z =272时) 100,000(在m/z =272时) | 分辨率和灵敏度仅次于FT-ICR; 价格比FT-ICR低 | 扫描速度慢; 不能单独做串极质谱 |
四级杆飞行时间质谱 (QTOF-MS) | LC-MS 20~4000 GC-MS 20~3000 | 最高可达40,000以上 | 提供高分辨谱图; 速度快; 适合复杂样品分析; 对更小分子量代谢物检测较好 | 分辨力和灵敏度不及 Orbitrap |
表2
代谢组学中常见数据库特点"
数据库 | 优点 | 缺点 | 文献 |
---|---|---|---|
HMDB | (1)公开数据库,免费公开下载; (2)检测定量代谢物18,557个; (3)包含MS/MS谱 GC-MS谱 (4)预测代谢物MS/MS谱图、GC-MS谱图 | MS/MS检测中对前体离子大小有限制 (< 20 Da) | [31] |
METLIN | (1)公开数据库; (2)包含超过13,000个标准品的高分辨质谱图; (3)不同碰撞能量下的高分辨的MS/MS谱图 >68,000个 | (1)所有数据均采自于QTOF质谱; (2)数据不可以下载 | [32,33] |
NIST v17 | (1)公开数据库; (2)包含267,376个化合物的EI 谱图; (3)包含13,808个化合物的574,826个MS/MS谱图 | 对外部数据来源标识不清 | [34] |
FiehnLib | (1)包含超过2200个EI谱图,覆盖超过1000种 代谢物 | (1)数据来源于Angilent公司气相色谱-单四级杆质谱和LECO公司GC-TOF; (2)数据主要来源于植物材料 | [35] |
LipidSearch | (1)包括超过150万个脂质离子及其预测离子碎片; (2)包括脂质加合离子和MSn信息 | (1)商业数据库; (2)数据使用Thermo公司orbitrap类仪器采集; (3)MS/MS数据由计算机算法得到 | [32] |
LMSD | (1)包含43,402个脂质结构; (2)谱图数据可以下载 | (1)在正负电离模式下预测MS/MS谱; (2)MS/MS光谱仅适用于每种脂质的一种加合物 | [36] |
MassBank | (1)公开数据库; (2)支持输入文本格式的质谱搜索; (3)所有质谱图均是由标准品得到的; (4)有19,000个MS1和28,000个 MS2及MSn谱图 | (1)数据库中信息未经充分筛选; (2)某些谱图信息包含噪音信号 | [37,38] |
KEGG | (1)综合性数据库; (2)包含代谢通路和互作网络信息; (3)包含17,268种代谢物和460条通路 | 图片分辨率较低,不美观 | [39] |
Reactome | (1)公开数据库; (2)包含1419个化合物及人类2287条通路 | 数据来源较为单一,主要收集人体主要代谢 通路信息 | [40] |
MetabolomeXchange | (1)公开数据库; (2)包含的数据来源于4个不同数据库; (3)包含代谢物结构及参考光谱、生物学作用、组 织和浓度等信息 | 数据库建设完善难度大 |
表3
代谢组与多组学联合分析在农业动物研究结果汇总"
物种 | 研究群体 | 样本类型 | 研究性状 | 代谢物分子 | 研究结论 | 文献 |
---|---|---|---|---|---|---|
猪 | 白杜洛克猪×二花脸猪 (n=591)、苏太猪(n=282) | 背最长肌 腹部脂肪 | 脂肪酸组成 | 长链脂肪酸 | 腹部脂肪中C20:0与16号染色体中SNP显著关联;肌肉中C18:0与14号染色体中SNP显著关联;脂肪酸组成的候选基因:SCD和ELOVL7 | [73] |
杜洛克猪×长白猪× 约克夏猪DLY(n=610) | 背最长肌 | 酸肉 | 肌糖原、葡萄糖 (RG)和乳酸 | PRKAG3基因中低频错义突变R200Q和PHKG1g.8283C> A引起猪RG含量显著升高,导致DLY猪酸肉性状 | [74] | |
未阉割公猪(n=1282) | 颈下脂肪 | 公猪肉膻味 | 雄烯酮 | SULT2A1、SULT2B1、HSD17B14和CYP2A19基因与公猪膻味性状有关 | [75] | |
牛 | 挪威红牛(n=878) | 牛乳 | 牛乳脂肪酸 组成 | 短链、中长链和 长链脂肪酸 | 在BTA1、BTA13和BTA15中检测到重要的与牛奶脂肪酸相关QTL,鉴定到脂肪酸从头合成重要候选基因NCOA6 | [76] |
意大利西门塔尔牛(n=416) 意大利荷斯坦牛(n=436) | 牛乳 | 牛乳脂肪酸 组成 | 脂肪酸 | 在西门塔尔牛中鉴定到ECI2、PCYT2、DCXR、G6PC3、PYCR1和ALG12与牛乳脂肪酸组成相关基因;在荷斯坦牛中CYP17A1、ACO2、PI4K2A、GOT1、GPT、NT5C2、PDE6G、POLR3H和COX15与牛乳脂肪酸组成相关基因 | [77] | |
荷斯坦-弗里斯兰奶牛 (n=248) | 牛乳 | 奶牛酮症预后 研究 | 磷酸胆碱和 甘油磷酸胆碱 | 位于25号染色体的APOBR基因中QTL与代谢物显著相关 | [78] | |
荷斯坦牛(n=1217) | 血清 | 血清电解质 QTL鉴定 | 钙、氯、钠、 钾和镁离子 | GATA2、TMEM123和SCN5A基因与牛电解质平衡相关 | [79] | |
中国西门塔尔牛(n=723) | 最长肌 | 脂肪酸组成 | 中链脂肪酸 | FASN和ELOVL5基因组脂肪酸有关 | [80] | |
内洛尔肉牛(表型n=963; 基因型n=1616) | 最长肌 | 脂肪酸含量 | 中链和长链脂肪酸 | 鉴定到与脂肪酸相关基因ELOVL5、ESSRG、PCYT1A、ABC5、ABC6和ABC10 | [81] | |
日本黑牛(n=574) | 最长肌 | 牛肉鲜味 | 牛磺酸、肌苷和 次黄嘌呤 | 鉴定到与牛磺酸相关基因SLC6A6、RAB7A、RPN1和CCDC12;与肌苷和次黄嘌呤相关基因NT5E | [82] | |
日本黑牛(n=1836) | 最长肌 | 氨基酸组成 | β-丙氨酸和 牛磺酸 | 鉴定到与氨基酸有关基因STT3B、SUV420H1、CPT1A、MRPL21和IGHMBP2 | [83] | |
鸡 | 伊朗Urmia鸡×AA肉鸡 F2群体(n=270) | 血浆 | 代谢性状相关 基因座鉴定 | 甘油三酯、 胆固醇和葡糖糖 | 鉴定到与甘油三酯相关基因DOCK10和AP1S3 | [84] |
[1] | Qiu DY, Huang LQ . Metabolomics--an important part of functional genomics. Mol Plant Bree, 2004,2(2):165-177. |
邱德有, 黄璐琦 . 代谢组学研究-功能基因组学研究的重要组成部分. 分子植物育种, 2004,2(2):165-177. | |
[2] |
Oliver SG . Yeast as a navigational aid in genome analysis. 1996 Kathleen Barton-Wright Memorial Lecture. Microbiology, 1997,143(5):1483-1487.
doi: 10.1099/00221287-143-5-1483 |
[3] | Nicholson JK, Lindon JC, Holmes E . 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999,29(11):1181-1189. |
[4] | Nicholson JK, Connelly J, Lindon JC, Holmes E . Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov, 2002,1(2):153-161. |
[5] | Lindon JC, Holmes E, Bollard ME, Stanley EG, Nicholson JK . Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers, 2004,9(1):1-31. |
[6] |
Nicholson JK, Wilson ID . Opinion: understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov, 2003,2(8):668-676.
doi: 10.1038/nrd1157 |
[7] | Fan SC, Gao Y, Zhang HZ, Huang M, Bi HC . Untargeted and targeted metabolomics and their applications in discovering drug targets. Prog Pharm Sci, 2017,41(4):263-269. |
范仕成, 高悦, 张慧贞, 黄民, 毕惠嫦 . 非靶向和靶向代谢组学在药物靶点发现中的应用. 药学进展, 2017,41(4):263-269. | |
[8] | Harrigan GG, Goodacre R . Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis, 2003. |
[9] | Bhute VJ, Bao X, Dunn KK, Knutson KR, McCurry EC, Jin G, Lee WH, Lewis S, Ikeda A, Palecek SP, . Metabolomics identifies metabolic markers of maturation in human pluripotent stem cell-derived cardiomyocytes. Theranostics, 2017,7(7):2078-2091. |
[10] |
Naviaux RK, Naviaux JC, Li K, Bright AT, Alaynick WA, Wang L, Baxter A, Nathan N, Anderson W, Gordon E . Metabolic features of chronic fatigue syndrome. Proc Natl Acad Sci USA, 2016,113(37):E5472-E5480.
doi: 10.1073/pnas.1607571113 |
[11] | Lai BW, Liu B, Liang YK . Research progress on food fraud using non-targeted metabolomics based on high-resolution mass spectrometry. Biotechnol Bull, 2019,35(2):192-197. |
赖博文, 刘玢, 梁永康 . 基于高分辨质谱的非靶向代谢组学在食品造假鉴定中的研究进展. 生物技术通报, 2019,35(2):192-197. | |
[12] | Ramarathnam N, Rubin LJ, Diosady LL . Studies on meat flavor. 4. Fractionation, characterization, and quantitation of volatiles from uncured and cured beef and chicken. J Agric Food Chem, 1993,41(6):939-945. |
[13] |
Zhang TL, Zhang AH, Qiu S, Yang SQ, Wang XJ , Current trends and innovations in bioanalytical techniques of metabolomics. Crit Rev Anal Chem, 2016,46(4):342-351.
doi: 10.1080/10408347.2015.1079475 |
[14] |
Dettmer K, Aronov PA, Hammock BD . Mass spectrometry-based metabolomics. Mass Spectrom Rev, 2007,26(1):51-78.
doi: 10.1002/(ISSN)1098-2787 |
[15] | Li H, Jiang Y, He FC . Recent development of metabonomics and its applications in clinical research. Hereditas(Beijing), 2008,30(4):389-399. |
李灏, 姜颖, 贺福初 . 代谢组学技术及其在临床研究中的应用. 遗传, 2008,30(4):389-399. | |
[16] | Ke CF, Zhang T, Wu XY, Li K . A statistical method for metabolomics data analysis. Chin J Heal Stat, 2014,31(2):357-359. |
柯朝甫, 张涛, 武晓岩, 李康 . 代谢组学数据分析的统计学方法. 中国卫生统计, 2014,31(2):357-359. | |
[17] | Feng L, Cao FR, Liu XM, Pan RL, Liao YH, Chang Q . Sample collection and preparation of untargeted metabolomics. Centr South Pharm, 2014,12(12):1217-1221. |
冯利, 曹芳瑞, 刘新民, 潘瑞乐, 廖永红, 常琪 . 非靶向代谢组学生物样品采集和制备方法探讨. 中南药学, 2014,12(12):1217-1221. | |
[18] |
Mathé EA, Patterson AD, Haznadar M, Manna SK, Krausz KW, Bowman ED, Shields PG, Idle JR, Smith PB, Anami K, Kazandjian DG, Hatzakis E, Gonzalez FJ, Harris CC . Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res, 2014,74(12):3259-3270.
doi: 10.1158/0008-5472.CAN-14-0109 |
[19] | Gong LX, Chi HL, Wang J, Zhang HJ, Liu YL . Application of targeted metabolomics technology in nutritional diseases. Sci Technol Food Ind, 2017,38(18):323-327. |
龚凌霄, 迟海林, 王静, 张慧娟, 刘英丽 . 靶向代谢组学技术在营养性疾病研究中的应用. 食品工业科技, 2017,38(18):323-327. | |
[20] | Liu WL, Wang CJ, Yao L, Ai D, Zhu Y . Effects of n-3 PUFA on early nonalcoholic fatty liver disease: a mechanism study based on targeted metabolomics. Chin J Pathophys, 2015, ( 10):1877-1877. |
刘雯丽, 王春炅, 姚柳, 艾玎, 朱毅 . n-3 PUFA对早期非酒精性脂肪性肝病的作用—基于靶向代谢组学的机制研究. 中国病理生理杂志, 2015, ( 10):1877-1877. | |
[21] |
Sawada Y, Akiyama K, Sakata A, Kuwahara A, Otsuki H, Sakurai T, Saito K, Hirai MY . Widely targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants. Plant Cell Physiol, 2009,50(1):37-47.
doi: 10.1093/pcp/pcn183 |
[22] |
Xuan Q, Hu C, Yu D, Wang L, Zhou Y, Zhao X, Li Q, Hou X, Xu G . Development of a high coverage pseudotargeted lipidomics method based on ultra-high performance liquid chromatography-mass spectrometry. Anal Chem, 2018,90(12):7608-7616.
doi: 10.1021/acs.analchem.8b01331 |
[23] |
Zha H, Cai Y, Yin Y, Wang Z, Li K, Zhu ZJ . SWATHtoMRM: Development of high-coverage targeted metabolomics method using SWATH technology for biomarker discovery. Anal Chem, 2018,90(6):4062-4070.
doi: 10.1021/acs.analchem.7b05318 |
[24] |
Yao M, Ma L, Humphreys WG, Zhu MS . Rapid screening and characterization of drug metabolites using amultiple ion monitoring-dependent MS/MS acquisition method on a hybrid triple quadrupole-linear ion trap mass spectrometer. J Mass Spectrom, 2008,43(10):1364-1375.
doi: 10.1002/jms.v43:10 |
[25] |
Chen W, Gong L, Guo ZL, Wang WS, Zhang HG, Liu XQ, Yu SB, Xiong LZ, Luo J . A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol Plant, 2013,6(6):1769-1780.
doi: 10.1093/mp/sst080 |
[26] |
Matsuda F, Okazaki Y, Oikawa A, Kusano M, Nakabayashi R, Kikuchi J, Yonemaru J, Ebana K, Yano M, Saito K . Dissection of genotype-phenotype associations in rice grains using metabolome quantitative trait loci analysis. Plant J, 2012,70(4):624-636.
doi: 10.1111/j.1365-313X.2012.04903.x |
[27] | Zhang FX, Wang GD . Current metabolomics platforms: technical composition and applications. Hereditas(Beijing), 2019,41(9):883-892. |
张凤霞, 王国栋 . 现代代谢组学平台建设及相关技术应用. 遗传, 2019,41(9):883-892. | |
[28] |
Evans CR, Karnovsky A, Kovach MA, Standiford TJ, Burant CF, Stringer KA . Untargeted LC-MS metabolomics of bronchoalveolar lavage fluid differentiates acute respiratory distress syndrome from health. J Proteome Res, 2014,13(2):640-649.
doi: 10.1021/pr4007624 |
[29] |
Ciborowski M, Lipska A, Godzien J, Ferrarini A, Korsak J, Radziwon P, Tomasiak M, Barbas C . Combination of LC-MS- and GC-MS-based metabolomics to study the effect of ozonated autohemotherapy on human blood. J Proteome Res, 2012,11(12):6231-6241.
doi: 10.1021/pr3008946 |
[30] |
Ramautar R, Somsen GW, De Jong GJ . CE-MS in metabolomics. Electrophoresis, 2009,30(1):276-291.
doi: 10.1002/elps.v30:1 |
[31] |
Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A . HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res, 2018,46(D1):D608-D617.
doi: 10.1093/nar/gkx1089 |
[32] |
Vinaixa M, Schymanski EL, Neumann S, Navarro M, Salekf RM, Yanes O . Mass spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and future prospects. Trends Analyt Chem, 2015,78:23-35.
doi: 10.1016/j.trac.2015.09.005 |
[33] |
Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G. METLIN: a metabolite mass spectral database. Ther Drug Monit, 2005,27(6):747-751.
doi: 10.1097/01.ftd.0000179845.53213.39 |
[34] | NIoSa T. NIST/EPA/NIH Mass Spectral Library with Search Program v17. 2017. |
[35] |
Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O . FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem, 2009,81(24):10038-10048.
doi: 10.1021/ac9019522 |
[36] |
Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill AHJ, Murphy RC, Raetz CR, Russell DW, Subramaniam S . LMSD: LIPID MAPS structure database. Nucleic Acids Res, 2007,35:D527-D532.
doi: 10.1093/nar/gkl838 |
[37] |
Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T . MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom, 2010,45(7):703-714.
doi: 10.1002/jms.v45:7 |
[38] | Song J, Wu YB, Zhou YH, Liu BJ, Wang N, Hao ZF, Wu YQ . Comparation and utilization of crop-omics databases. Hereditas(Beijing), 2018,40(7):534-545. |
宋洁, 吴永波, 周跃恒, 柳波娟, 王楠, 郝转芳, 吴元奇 . 作物组学数据库的比较和应用. 遗传, 2018,40(7):534-545. | |
[39] | Laboratories K . KEGG: Kyoto Encyclopedia of Genes and Genomes, 2019. |
[40] | Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K, Cook J, Gillespie M, Haw R, Loney F, May B, Milacic M, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Weiser J, Wu G, Stein L, Hermjakob H , D'Eustachio P. The reactome pathway knowledgebase. Nucleic Acids Res, 2020,48(D1):D498-D503. |
[41] |
Bovo S, Mazzoni G, Galimberti G, Calo DG, Fanelli F, Mezzullo M, Schiavo G, Manisi A, Trevisi P, Bosi P, Dall'Olio S, Pagotto U, Fontanesi L,. Metabolomics evidences plasma and serum biomarkers differentiating two heavy pig breeds. Animal, 2016,10(10):1741-1748.
doi: 10.1017/S1751731116000483 |
[42] |
He QH, Ren PP, Kong XF, Wu YN, Wu GY, Li P, Hao FH, Tang HR, Blachier F, Yin YL . Comparison of serum metabolite compositions between obese and lean growing pigs using an NMR-based metabonomic approach. J Nutr Biochem, 2012,23(2):133-139.
doi: 10.1016/j.jnutbio.2010.11.007 |
[43] |
Ji B, Middleton JL, Ernest B, Saxton AM, Lamont SJ, Campagna SR, Voy BH . Molecular and metabolic profiles suggest that increased lipid catabolism in adipose tissue contributes to leanness in domestic chickens. Physiol Genomics, 2014,46(9):315-327.
doi: 10.1152/physiolgenomics.00163.2013. |
[44] |
Beauclercq S, Nadal-Desbarats L, Hennequet-Antier C, Collin A, Tesseraud S, Bourin M, Le Bihan-Duval E, Berri C,. Serum and muscle metabolomics for the prediction of ultimate pH, a key factor for chicken-meat quality. J Proteome Res, 2016,15(4):1168-1178.
doi: 10.1021/acs.jproteome.5b01050 |
[45] |
Bovo S, Mazzoni G, Calò DG, Galimberti G, Fanelli F, Mezzullo M, Schiavo G, Scotti E, Manisi A, Samoré AB, Bertolini F, Trevisi P, Bosi P, Dall'Olio S, Pagotto U, Fontanesi L. Deconstructing the pig sex metabolome: Targeted metabolomics in heavy pigs revealed sexual dimorphisms in plasma biomarkers and metabolic pathways. J Anim Sci, 2015,93(12):5681-5693.
doi: 10.2527/jas.2015-9528 |
[46] |
Rohart F, Paris A, Laurent B, Canlet C, Molina J, Mercat MJ, Tribout T, Muller N, Iannuccelli N, Villa-Vialaneix N, Liaubet L, Milan D, San Cristobal M . Phenotypic prediction based on metabolomic data for growing pigs from three main European breeds. J Anim Sci, 2012,90(13):4729-4740.
doi: 10.2527/jas.2012-5338 |
[47] |
Picone G, Zappaterra M, Luise D, Trimigno A, Capozzi F, Motta V, Davoli R, Nanni Costa L, Bosi P, Trevisi P . Metabolomics characterization of colostrum in three sow breeds and its influences on piglets' survival and litter growth rates. J Anim Sci Biotechnol, 2018,9(1):23.
doi: 10.1186/s40104-018-0237-1 |
[48] |
Karisa BK, Thomson J, Wang Z, Li C, Montanholi YR, Miller SP, Moore SS, Plastow GS . Plasma metabolites associated with residual feed intake and other productivity performance traits in beef cattle. Livest Sci, 2014,165(1):200-211.
doi: 10.1016/j.livsci.2014.03.002 |
[49] |
Sun HZ, Wang DM, Wang B, Wang JK, Liu HY, Guan LL, Liu JX . Metabolomics of four biofluids from dairy cows: potential biomarkers for milk production and quality. J Proteome Res, 2015,14(2):1287-1298.
doi: 10.1021/pr501305g |
[50] |
Beauclercq S, Nadal-Desbarats L, Hennequet-Antier C, Gabriel I, Tesseraud S, Calenge F, Le Bihan-Duval E, Mignon-Grasteau S,. Relationships between digestive efficiency and metabolomic profiles of serum and intestinal contents in chickens. Sci Rep, 2018,8(1):6678.
doi: 10.1038/s41598-018-24978-9 |
[51] |
Gong WJ, Jia JJ, Zhang BK, Mi SJ, Zhang L, Xie XM, Guo HC, Shi JS, Tu CC . Serum metabolomic profiling of piglets infected with virulent classical swine fever virus. Front Microbiol, 2017,8:731.
doi: 10.3389/fmicb.2017.00731 |
[52] |
Welle T, Hoekstra AT, Daemen IAJJM, Berkers CR, Costa MO . Metabolic response of porcine colon explants to in vitro infection by Brachyspira hyodysenteriae: a leap into disease pathophysiology. Metabolomics, 2017,13(7):83.
doi: 10.1007/s11306-017-1219-6 |
[53] |
Hailemariam D, Mandal R, Saleem F, Dunn SM, Wishart DS, Ametaj BN . Identification of predictive biomarkers of disease state in transition dairy cows. J Dairy Sci, 2014,97(5):2680-2693.
doi: 10.3168/jds.2013-6803 |
[54] |
Zhang GS, Dervishi E, Dunn SM, Mandal R, Liu P, Han B, Wishart DS, Ametaj BN . Metabotyping reveals distinct metabolic alterations in ketotic cows and identifies early predictive serum biomarkers for the risk of disease. Metabolomics, 2017,13(4):43.
doi: 10.1007/s11306-017-1180-4 |
[55] |
Shen Y, Shi S, Tong H, Guo Y, Zou J . Metabolomics analysis reveals that bile acids and phospholipids contribute to variable responses to low-temperature- induced ascites syndrome. Mol Biosyst, 2014,10(6):1557-1567.
doi: 10.1039/c4mb00137k |
[56] |
Lu Z, He X, Ma B, Zhang L, Li J, Jiang Y, Zhou G, Gao F . Serum metabolomics study of nutrient metabolic variations in chronic heat-stressed broilers. Br J Nutr, 2018,119(7):771-781.
doi: 10.1017/S0007114518000247 |
[57] | Wasseriwan AE . Symposium on meat flavor. Chemical basis for meat flavor: A review. J Food Sci, 2010,44(1):6-11. |
[58] | Liu H, Wang Z, Zhang D, Shen Q, Pan T, Hui T, Ma J . Characterization of key aroma compounds in beijing roasted duck by gas chromatography-olfactometry-mass spectrometry, odor-activity values, and aroma-recombination experiments. J Agric Food Chem, 2019,67(20):5847-5856. |
[59] |
Liu H, Yao G, Liu X, Liu C, Zhan J, Liu D, Wang P, Zhou Z . Approach for pesticide residue analysis for metabolite prothioconazole-desthio in animal origin food. J Agric Food Chem, 2017,65(11):2481-2487.
doi: 10.1021/acs.jafc.7b00062 |
[60] |
Yin Z, Chai T, Mu P, Xu N, Song Y, Wang X, Jia Q, Qiu J . Multi-residue determination of 210 drugs in pork by ultra-high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A, 2016,1463:49-59.
doi: 10.1016/j.chroma.2016.08.001 |
[61] |
Trivedi DK, Hollywood KA, Rattray NJ, Ward H, Trivedi DK, Greenwood J, Ellis DI, Goodacre R . Meat, the metabolites: an integrated metabolite profiling and lipidomics approach for the detection of the adulteration of beef with pork. Analyst, 2016,141(7):2155-2164.
doi: 10.1039/C6AN00108D |
[62] |
Tieman D, Zhu G, Resende MF, J r., Lin T, Nguyen C, Bies D, Rambla JL, Beltran KS, Taylor M, Zhang B, Ikeda H, Liu Z, Fisher J, Zemach I, Monforte A, Zamir D, Granell A, Kirst M, Huang S, Klee H. A chemical genetic roadmap to improved tomato flavor. Science, 2017,355(6323):391-394.
doi: 10.1126/science.aal1556 |
[63] |
Shang Y, Ma Y, Zhou Y, Zhang H, Duan L, Chen H, Zeng J, Zhou Q, Wang S, Gu W, Liu M, Ren J, Gu X, Zhang S, Wang Y, Yasukawa K, Bouwmeester HJ, Qi X, Zhang Z, Lucas WJ, Huang S . Plant science. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science, 2014,346(6213):1084-1088.
doi: 10.1126/science.1259215 |
[64] |
Chen W, Gao Y, Xie W, Gong L, Lu K, Wang W, Li Y, Liu X, Zhang H, Dong H, Zhang W, Zhang L, Yu S, Wang G, Lian X, Luo J . Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet, 2014,46(7):714-721.
doi: 10.1038/ng.3007 |
[65] |
Zhu G, Wang S, Huang Z, Zhang S, Liao Q, Zhang C, Lin T, Qin M, Peng M, Yang C, Cao X, Han X, Wang X, van der Knaap E, Zhang Z, Cui X, Klee H, Fernie AR, Luo J, Huang S. Rewiring of the fruit metabolome in tomato breeding. Cell, 2018,172(1-2):249-261.
doi: 10.1016/j.cell.2017.12.019 |
[66] | Zhou M, Jing JH, Mao RH, Guo J, Wang ZP . Applications of metabonomics in animal genetics and breeding. Hereditas(Beijing), 2019, 41(2):111-124. |
周萌, 景军红, 毛瑞涵, 郭静, 王志鹏 . 代谢组学在家养动物遗传育种中的应用. 遗传, 2019,41(2):111-124. | |
[67] | Liu Y, Jin L, Li MZ . Research and application of metabolomics in agricultural animals. Chin J Anim Sci, 2018,54(6):1-5. |
刘瑞, 金龙, 李明洲 . 代谢组学在农业动物中的研究与应用. 中国畜牧杂志, 2018,54(6):1-5. | |
[68] |
Son VM, Enger EG, Grove H, Ros-Freixedes R, Kent MP, Lien S, Grindflek E . Genome-wide association study confirm major QTL for backfat fatty acid composition on SSC14 in Duroc pigs. BMC Genomics, 2017,18(1):369.
doi: 10.1186/s12864-017-3752-0 |
[69] |
Welzenbach J, Neuhoff C, Heidt H, Cinar MU, Looft C, Schellander K, Tholen E, Große-Brinkhaus C . Integrative analysis of metabolomic, proteomic and genomic data to reveal functional pathways and candidate genes for drip loss in pigs. Int J Mol Sci, 2016,17(9):1426.
doi: 10.3390/ijms17091426 |
[70] |
Melzer N, Wittenburg D, Repsilber D . Integrating milk metabolite profile information for the prediction of traditional milk traits based on SNP information for Holstein cows. PLoS One, 2013,8(8):e70256.
doi: 10.1371/journal.pone.0070256 |
[71] |
Widmann P, Reverter A, Weikard R, Suhre K, Hammon HM, Albrecht E, Kuehn C . Systems biology analysis merging phenotype, metabolomic and genomic data identifies Non-SMC Condensin I Complex, Subunit G (NCAPG) and cellular maintenance processes as major contributors to genetic variability in bovine feed efficiency. PLoS One, 2015,10(4):e0124574.
doi: 10.1371/journal.pone.0124574 |
[72] |
Shi SR, Shen YR, Zhang S, Zhao ZH, Hou ZC, Zhou HJ, Zou JM, Guo YM . Combinatory evaluation of transcriptome and metabolome profiles of low temperature-induced resistant ascites syndrome in broiler chickens. Sci Rep, 2017,7(1):2389.
doi: 10.1038/s41598-017-02492-8 |
[73] |
Yang B, Zhang WC, Zhang ZY, Fan Y, Xie XH, Ai HS, Ma JM, Xiao SJ, Huang LS, Ren J . Genome-wide association analyses for fatty acid composition in porcine muscle and abdominal fat tissues. PLoS One, 2013,8(6):e65554.
doi: 10.1371/journal.pone.0065554 |
[74] |
Liu XX, Zhou LS, Xie XH, Wu ZZ, Xiong XW, Zhang ZY, Yang J, Xiao SJ, Zhou MQ, Ma JW, Huang LS . Muscle glycogen level and occurrence of acid meat in commercial hybrid pigs are regulated by two low-frequency causal variants with large effects and multiple common variants with small effects. Genet Sel Evol, 2019,51(1):46.
doi: 10.1186/s12711-019-0488-0 |
[75] |
Duijvesteijn N, Knol EF, Bijma P . Boar taint in entire male pigs: a genomewide association study for direct and indirect genetic effects on androstenone. J Anim Sci, 2014,92(10):4319-4328.
doi: 10.2527/jas2014-7863 |
[76] |
Olsen HG, Knutsen TM, Kohler A, Svendsen M, Gidskehaug L, Grove H, Nome T, Sodeland M, Sundsaasen KK, Kent MP, Martens H, Lien S . Genome-wide association mapping for milk fat composition and fine mapping of a QTL for de novo synthesis of milk fatty acids on bovine chromosome 13. Genet Sel Evol, 2017,49(1):20.
doi: 10.1186/s12711-017-0294-5 |
[77] |
Palombo V, Milanesi M, Sgorlon S, Capomaccio S, Mele M, Nicolazzi E, Ajmone-Marsan P, Pilla F, Stefanon B, D'Andrea M. Genome-wide association study of milk fatty acid composition in Italian Simmental and Italian Holstein cows using single nucleotide polymorphism arrays. J Dairy Sci, 2018,101(12):11004-11019.
doi: 10.3168/jds.2018-14413 |
[78] |
Tetens J, Heuer C, Heyer I, Klein MS, Gronwald W, Junge W, Oefner PJ, Thaller G, Krattenmacher N . Polymorphisms within the APOBR gene are highly associated with milk levels of prognostic ketosis biomarkers in dairy cows. Physiol Genomics, 2015,47(4):129-137.
doi: 10.1152/physiolgenomics.00126.2014 |
[79] |
Gan QF, Li YR, Lund M, Su GS, Liang XW . Genome-wide association study identifies loci linked to serum electrolyte traits in Chinese Holstein cattle. Anim Genet, 2019,50(6):744-748.
doi: 10.1111/age.v50.6 |
[80] |
Zhu B, Niu H, Zhang WQ, Wang ZZ, Liang YH, Guan L, Guo P, Chen Y, Zhang LP, Guo Y, Ni HM, Gao X, Gao HJ, Xu LY, Li JY . Genome wide association study and genomic prediction for fatty acid composition in Chinese Simmental beef cattle using high density SNP array. BMC Genomics, 2017,18(1):464.
doi: 10.1186/s12864-017-3847-7 |
[81] |
Lemos MVA, Chiaia HLJ, Berton MP, Feitosa FLB, Aboujaoud C, Camargo GMF, Pereira ASC, Albuquerque LG, Ferrinho AM, Mueller LF, Mazalli MR, Furlan JJM, Carvalheiro R, Gordo DM, Tonussi R, Espigolan R, de Oliveira Silva RM, de Oliveira HN, Duckett S, Aguilar I, Baldi F. Genome-wide association between single nucleotide polymorphisms with beef fatty acid profile in Nellore cattle using the single step procedure. BMC Genomics, 2016,17:213.
doi: 10.1186/s12864-016-2511-y |
[82] |
Uemoto Y, Ohtake T, Sasago N, Takeda M, Abe T, Sakuma H, Kojima T, Sasaki S . Effect of two non-synonymous ecto-5'-nucleotidase variants on the genetic architecture of inosine 5'-monophosphate (IMP) and its degradation products in Japanese Black beef. BMC Genomics, 2017,18(1):874.
doi: 10.1186/s12864-017-4275-4 |
[83] |
Sasago N, Takeda M, Ohtake T, Abe T, Sakuma H, Kojima T, Sasaki S, Uemoto Y . Genome-wide association studies identified variants for taurine concentration in Japanese Black beef. Anim Sci J, 2018,89(8):1051-1059.
doi: 10.1111/asj.2018.89.issue-8 |
[84] |
Javanrouh-Aliabad A, Vaez Torshizi R, Masoudi AA, Ehsani A . Identification of candidate genes for blood metabolites in Iranian chickens using a genome-wide association study. Brit Poultry Sci, 2018,59(4):381-388.
doi: 10.1080/00071668.2018.1472743 |
[85] |
Goldansaz SA, Guo AC, Sajed T, Steele MA, Plastow GS, Wishart DS . Livestock metabolomics and the livestock metabolome: A systematic review. PLoS One, 2017,12(5):e0177675.
doi: 10.1371/journal.pone.0177675 |
[1] | 张凤霞,王国栋. 现代代谢组学平台建设及相关技术应用[J]. 遗传, 2019, 41(9): 883-892. |
[2] | 周萌,景军红,毛瑞涵,郭静,王志鹏. 代谢组学在家养动物遗传育种中的应用[J]. 遗传, 2019, 41(2): 111-124. |
[3] | 幸宇云, 杨强, 任军. CRISPR/Cas9基因组编辑技术在农业动物中的应用[J]. 遗传, 2016, 38(3): 217-226. |
[4] | 赵艳 李燕燕. 组学技术评价转基因农作物的非预期效应[J]. 遗传, 2013, 35(12): 1360-1367. |
[5] | 李灏,姜颖,贺福初. 代谢组学技术及其在临床研究中的应用[J]. 遗传, 2008, 30(4): 389-399. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: