[1] James C. 2012年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2013, 33(2): 1–8. <\p>
[2] Kuiper HA, Kleter GA, Noteborn HPJM, Kok EJ. As-sessment of the food safety issues related to genetically modified foods. Plant J, 2001, 27(6): 503–528. <\p>
[3] Kim JK, Ha SH, Park SY, Lee SM, Kim HJ, Lim SH, Suh SC, Kim DH, Cho HS. Determination of lipophilic com-pounds in genetically modified rice using gas chromatog-raphy-time-flight mass spectrometry. Food Compos Anal, 2012, 25(1): 31–38. <\p>
[4] Barros E, Lezar S, Anttonen MJ, van Dijk JP, Röhlig RM, Kok EJ, Engel KH. Comparison of two GM maize varie-ties with a near-isogenic non-GM variety using transcrip-tomics, proteomics and metabolomics. Plant Biotechnol, 2010, 8(4): 436–451. <\p>
[5] Cellini F, Chesson A, Colquhoun I, Constable A, Davies HV, Engel KH, Gatehouse AMR, Kärenlampi S, Kok EJ, Leguay JJ, Lehesranta S, Noteborn HPJM, Pedersen J, Smith M. Unintended effects and their detection in ge-netically modified crops. Food Chem Toxicol, 2004, 42(7): 1089–1125. <\p>
[6] Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays. Nature, 2000, 405(6788): 827–836. <\p>
[7] 杨旭, 焦睿, 杨琳, 吴莉萍, 李英睿, 王俊. 基于新一代高通量技术的人类疾病组学研究策略. 遗传, 2011, 33(8): 829–846. <\p>
[8] Baudo MM, Lyons R, Powers S, Pastori GM, Edwards KJ, Holdsworth MJ, Shewry PR. Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnol, 2006, 4(4): 369–380. <\p>
[9] Cheng KC, Beaulieu J, Iquira E, Belzile FJ, Fortin MG, Strörmvik MV. Effect of transgenes on global gene ex-pression in soybean is within the natural range of variation of conventional cultivars. Food Chem, 2008, 56(9): 3057–3067. <\p>
[10] Coll A, Nadal A, Palaudelmàs M, Messeguer J, Melé E, Puigdomènech P, Pla M. Lack of repeatable differential expression patterns between MON810 and comparable commercial varieties of maize. Plant Mol Biol, 2008, 68(1-2): 105–117. <\p>
[11] Coll A, Nadal A, Collado R, Capellades G, Messeguer J, Melé E, Palaudelmàs M, Pla M. Gene expression profiles of MON810 and comparable non-GM maize varieties cul-tured in the field are more similar than are those of con-ventional lines. Transgenic Res, 2009, 18(5): 801–808. <\p>
[12] Coll A, Nadal A, Collado R, Capellades G, Kubista M, Messeguer J, Pla M. Natural variation explains most tran-scriptomic changes among maize plants of MON810 and comparable non-GM varieties subjected to two N-fertilization farming practices. Plant Mol Biol, 2010, 73(3): 349–362. <\p>
[13] Montero M, Coll A, Nadal A, Messeguer J, Pla M. Only half the transcriptomic differences between resistant ge-netically modified and conventional rice are associated with the transgene. Plant Biotechnol, 2011, 9(6): 693–702. <\p>
[14] Batista R, Saibo N, Lourenco T, Oliveira MM. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Natl Acad Sci USA, 2008, 105(9): 3640–3645. <\p>
[15] 金良, 陈尚武, 马会勤. 葡萄蛋白质组学研究进展. 中国生物工程杂志, 2010, 30(10): 100–107. <\p>
[16] 李欣, 黄昆仑, 朱本忠, 唐茂芝, 罗云波. 利用“组学”技术检测转基因作物非期望效应的潜在性. 农业生物技术学报, 2005, 13(6): 802–807. <\p>
[17] Coll A, Nadal A, Rossignol M, Puigdomènech P, Pla M. Proteomic analysis of MON810 and comparable non-GM maize varieties grown in agricultural fields. Transgenic Res, 2011, 20(4): 939–949. <\p>
[18] Albo AG, Mila S, Digilio G, Motto M, Aime S, Corpillo D. Proteomic analysis of a genetically modified maize flour carrying Cry1Ab gene and comparison to the correspond-ing wild-type. Maydica, 2007, 52(4): 443–455. <\p>
[19] Zolla L, Rinalducci S, Antonioli P, Righetti PG. Pro-teomics as a complementary tool for identifying unin-tended side effects occurring in transgenic maize seeds as a result of genetic modifications. Proteome Res, 2008, 7(5): 1850–1861. <\p>
[20] Wang Y, Xu WT, Zhao WW, Hao JR, Luo YB, Tang XG, Zhang Y, Huang KL. Comparative analysis of the proteo-mic and nutritional composition of transgenic rice seeds with Cry1ab/ac genes and their non-transgenic counter-parts. Cereal Sci, 2012, 55(2): 226–233. <\p>
[21] Xue K, Yang J, Liu B, Xue DY. The integrated risk as-sessment of transgenic rice Oryza sativa: A comparative proteomics approach. Food Chem, 2012, 135(1): 314–318. <\p>
[22] Barbosa HS, Arruda SCC, Azevedo RA, Arruda MAZ. New insights on proteomics of transgenic soybean seeds: evaluation of differential expressions of enzymes and proteins. Anal Bioanal Chem, 2012, 402(1): 299–314. <\p>
[23] 胡正青, 林夏珍, 郭明. 代谢组学研究技术进展. 中国现代应用药学, 2010, 27(6): 485–490. <\p>
[24] Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L. Metabolite profiling for plant functional genomics. Nat Biotechnol, 2000, 18(11): 1157–1161. <\p>
[25] Kim JK, Park SY, Lee SM, Lim SH, Kim HJ, Oh SD, Yeo Y, Cho HS, Ha SH. Unintended polar metabolite profiling of carotenoid-biofortified transgenic rice reveals substan-tial equivalence to its non-transgenic counterpart. Plant Biotechnol Rep, 2013, 7(1): 121–128. <\p>
[26] Piccioni F, Capitani D, Zolla L , Mannina L. NMR meta-bolic profiling of transgenic maize with the Cry1A(b) gene. Food Chem, 2009, 57(14): 6041–6049. <\p>
[27] Zhou J, Zhang L, Li Xiang, Chang YW, Gu Q, Lu X, Zhu Z, Xu GW. Metabolic profiling of transgenic rice progeny using gas chromatography-mass spectrometry: the effects of gene insertion, tissue culture and breeding. Me-tabolomics, 2012, 8 (4): 529-539. <\p>
[28] Röhlig RM, Eder J, Engel KH. Metabolite profiling of maize grain: differentiation due to genetics and environ-ment. Metabolomics, 2009, 5(4): 459–477. <\p>
[29] Frank T, Röhlig RM, Davies HV, Barros E, Engel KH. Metabolite profiling of maize kernels-genetic modification versus environmental influence. Food Chem, 2012, 60(12): 3005–3012. <\p>
[30] Zhou J, Ma CF, Xu HL, Yuan KL, Lu X, Zhu Z, Wu YN, Xu GW. Metabolic profiling of transgenic rice with cryIAc and sck genes: An evaluation of unintended effects at metabolic level by using GC-FID and GC–MS. J Chro-matogr B Analyt Technol Biomed Life Sci, 2009, 877(8-9): 725–732. <\p>
[31] Chang YW, Zhao CX, Zhu Z, Wu ZM, Zhou J, Zhao YN, Lu X, Xu GW. Metabolic profiling based on LC/MS to evaluate unintended effects of transgenic rice with cry1Ac and sck genes. Plant Mol Biol, 2012, 78(4-5): 477–487. <\p>
[32] Levandi T, Leon C, Kaljurand M, Virginia GC, Cifuentes A. Capillary electrophoresis time-of-flight mass spec-trometry for comparative metabolomics of transgenic versus conventional maize. Anal Chem, 2008, 80(16): 6329– 6335. <\p>
[33] García-Villalba R, León C, Dinelli G, Segura-Carretero A, Fernández-Gutiérrez A, Garcia-Cañas V, Cifuentes A. Comparative metabolomic study of transgenic versus conventional soybean using capillary electrophoresis- time-of-flight mass spectrometry. J Chromatogr A, 2008, 1195(1): 164–173. <\p>
[34] Leon C, Rodriguez-Meizoso I, Lucio M, Garcia-Cañas V, Ibañez E, Schmitt-Kopplin P, Cifuentes A. Metabolomics of transgenic maize combining Fourier transform-ion cy-clotron resonance-mass spectrometry, capillary electro-phoresis-mass spectrometry and pressurized liquid extrac-tion. J Chromatogr A, 2009, 1216(43): 7314–7323. <\p>
[35] FAO/WHO. Report of the First Session of the Codex ad-hoc Intergovernmental Task Force on Foods Derived from Biotechnology (ALINORM 01-34). Rome: Food and Ag-riculture Organization of the United Nations, 2000. http://www.fao.org/es/esn/gm/biotc-e.htm. <\p>
[36] FAO/WHO. Safety Aspects of Genetically Modified Foods of Plant Origin. Report of a Joint FAO/WHO Expert Con-sultation on Foods Derived from Biotechnology, Geneva, Switzerland, 29 May–2 June 2000. Rome: Food and Agri-culture Organization of the United Nations, 2000. http://www.fao.org/es/esn/gm/biotec-e.htm. <\p>
[37] Hoekenga OA. Using metabolomics to estimate unin-tended effects in transgenic crop plants: problems, prom-ises, and opportunities. J Biomol Tech, 2008, 19(3): 159– 166. <\p>
[38] Hernan RA, Price WD. Unintended compositional changes in genetically modified (GM) crops: 20 years of research. J Agric Food Chem, 2013, http://dx.doi.org/10.1021/jf400135r.<\p> |