[1] James C. 2012年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2013, 33(2): 1–8. <\p>
[2] Kuiper HA, Kleter GA, Noteborn HPJM, Kok EJ. As-sessment of the food safety issues related to genetically modified foods. Plant J, 2001, 27(6): 503–528. <\p>
[3] Kim JK, Ha SH, Park SY, Lee SM, Kim HJ, Lim SH, Suh SC, Kim DH, Cho HS. Determination of lipophilic com-pounds in genetically modified rice using gas chromatog-raphy-time-flight mass spectrometry. Food Compos Anal, 2012, 25(1): 31–38. <\p>
[4] Barros E, Lezar S, Anttonen MJ, van Dijk JP, Röhlig RM, Kok EJ, Engel KH. Comparison of two GM maize varie-ties with a near-isogenic non-GM variety using transcrip-tomics, proteomics and metabolomics. Plant Biotechnol, 2010, 8(4): 436–451. <\p>
[5] Cellini F, Chesson A, Colquhoun I, Constable A, Davies HV, Engel KH, Gatehouse AMR, Kärenlampi S, Kok EJ, Leguay JJ, Lehesranta S, Noteborn HPJM, Pedersen J, Smith M. Unintended effects and their detection in ge-netically modified crops. Food Chem Toxicol, 2004, 42(7): 1089–1125. <\p>
[6] Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays. Nature, 2000, 405(6788): 827–836. <\p>
[7] 杨旭, 焦睿, 杨琳, 吴莉萍, 李英睿, 王俊. 基于新一代高通量技术的人类疾病组学研究策略. 遗传, 2011, 33(8): 829–846. <\p>
[8] Baudo MM, Lyons R, Powers S, Pastori GM, Edwards KJ, Holdsworth MJ, Shewry PR. Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnol, 2006, 4(4): 369–380. <\p>
[9] Cheng KC, Beaulieu J, Iquira E, Belzile FJ, Fortin MG, Strörmvik MV. Effect of transgenes on global gene ex-pression in soybean is within the natural range of variation of conventional cultivars. Food Chem, 2008, 56(9): 3057–3067. <\p>
[10] Coll A, Nadal A, Palaudelmàs M, Messeguer J, Melé E, Puigdomènech P, Pla M. Lack of repeatable differential expression patterns between MON810 and comparable commercial varieties of maize. Plant Mol Biol, 2008, 68(1-2): 105–117. <\p>
[11] Coll A, Nadal A, Collado R, Capellades G, Messeguer J, Melé E, Palaudelmàs M, Pla M. Gene expression profiles of MON810 and comparable non-GM maize varieties cul-tured in the field are more similar than are those of con-ventional lines. Transgenic Res, 2009, 18(5): 801–808. <\p>
[12] Coll A, Nadal A, Collado R, Capellades G, Kubista M, Messeguer J, Pla M. Natural variation explains most tran-scriptomic changes among maize plants of MON810 and comparable non-GM varieties subjected to two N-fertilization farming practices. Plant Mol Biol, 2010, 73(3): 349–362. <\p>
[13] Montero M, Coll A, Nadal A, Messeguer J, Pla M. Only half the transcriptomic differences between resistant ge-netically modified and conventional rice are associated with the transgene. Plant Biotechnol, 2011, 9(6): 693–702. <\p>
[14] Batista R, Saibo N, Lourenco T, Oliveira MM. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Natl Acad Sci USA, 2008, 105(9): 3640–3645. <\p>
[15] 金良, 陈尚武, 马会勤. 葡萄蛋白质组学研究进展. 中国生物工程杂志, 2010, 30(10): 100–107. <\p>
[16] 李欣, 黄昆仑, 朱本忠, 唐茂芝, 罗云波. 利用“组学”技术检测转基因作物非期望效应的潜在性. 农业生物技术学报, 2005, 13(6): 802–807. <\p>
[17] Coll A, Nadal A, Rossignol M, Puigdomènech P, Pla M. Proteomic analysis of MON810 and comparable non-GM maize varieties grown in agricultural fields. Transgenic Res, 2011, 20(4): 939–949. <\p>
[18] Albo AG, Mila S, Digilio G, Motto M, Aime S, Corpillo D. Proteomic analysis of a genetically modified maize flour carrying Cry1Ab gene and comparison to the correspond-ing wild-type. Maydica, 2007, 52(4): 443–455. <\p>
[19] Zolla L, Rinalducci S, Antonioli P, Rig |