[1] Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol , 2001, 21(1): 289-297.
[2] Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics , 2002, 161(3): 1169-1175.
[3] Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet , 2010, 11(9): 636-646.
[4] Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res , 2011, 39(1): 359-372.
[5] Miller JC, Tan S, Qiao GJ, Barlow KA, Wang JB, Xia DF, Meng XD, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol , 2011, 29(2): 143-148.
[6] Mahfouz MM, Li LX, Shamimuzzaman M, Wibowo A, Fang XY, Zhu JK. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA , 2011, 108(6): 2623-2628.
[7] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science , 337(6096): 816-821.
[8] 2013 Runners-Up. Genetic microsurgery for the masses. Science , 2013, 342(6165): 1434-1435.
[9] Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science , 2010, 327(5962): 167-170.
[10] Seed KD, Lazinski DW, Calderwood SB, Camilli A. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature , 2013, 494(7438): 489-491.
[11] Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, van der Oost J, Koonin EV. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol , 2011, 9(6): 467-477.
[12] Zhou JW, Xu QP, Yao J, Yu SM, Cao SZ. CRISPR/Cas9 genome editing technique and its application in site-directed genome modification of animals. Hereditas (Beijing) , 2015, 37(10): 1011-1020. 周金伟, 徐绮嫔, 姚婧, 余树民, 曹随忠. CRISPR/Cas9基因组编辑技术及其在动物基因组定点修饰中的应用. 遗传, 2015, 37(10): 1011-1020.
[13] Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA- programmed genome editing in human cells. Elife , 2013, 2: e00471.
[14] Cong L, Ann Ran F, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science , 2013, 339(6121): 819-823.
[15] Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science , 2013, 339(6121): 823-826.
[16] Lu XJ, Xue HY, Ke ZP, Chen JL, Ji LJ. CRISPR-Cas9: a new and promising player in gene therapy. J Med Genet , 2015, 52(5): 289-296.
[17] Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet , 2015, 16(5): 299-311.
[18] Feng WY, Dai YF, Mou LS, Cooper DKC, Shi DS, Cai ZM. The potential of the combination of CRISPR/Cas9 and pluripotent stem cells to provide human organs from chimaeric pigs. Int J Mol Sci , 2015, 16(3): 6545-6556.
[19] Hai T, Teng F, Guo RF, Li W, Zhou Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res , 2014, 24(3): 372-375.
[20] Zhou XQ, Xin JG, Fan NN, Zou QJ, Huang J, Ouyang Z, Zhao Y, Zhao BT, Liu ZM, Lai SS, Yi XL, Guo L, Esteban MA, Zeng YZ, Yang HQ, Lai LX. Generation of CRISPR/ Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci , 2015, 72(6): 1175-1184.
[21] Honda A, Hirose A, Sankai T, Yasmin L, Yuzawa K, Honsho K, Izu H, Iguchi A, I |