遗传 ›› 2016, Vol. 38 ›› Issue (3): 217-226.doi: 10.16288/j.yczz.15-398
幸宇云, 杨强, 任军
收稿日期:
2015-09-21
修回日期:
2016-01-03
出版日期:
2016-03-20
发布日期:
2016-03-20
通讯作者:
幸宇云,副研究员,研究方向:动物遗传育种与繁殖,动物转基因技术.
E-mail:xingyuyun9@hotmail.com
基金资助:
Yuyun Xing, Qiang Yang, Jun Ren
Received:
2015-09-21
Revised:
2016-01-03
Online:
2016-03-20
Published:
2016-03-20
Supported by:
摘要: CRISPR(Clustered regularly interspaced short palindromic repeats)/Cas(CRISPR associated proteins)是在细菌和古细菌中发现的一种用来抵御病毒或质粒入侵的获得性免疫系统.目前已发现的CRISPR/Cas系统包括Ⅰ,Ⅱ和Ⅲ型,其中Ⅱ型系统的组成较简单,由其改造成的CRISPR/Cas9技术已成为一种高效的基因组编辑工具.自2013年CRISPR/Cas9技术成功用于哺乳动物基因组定点编辑以来,应用该技术进行基因组编辑的报道呈现出爆发式的增长.农业动物不仅是重要的经济动物,也是人类疾病和生物医药研究的重要模式动物.本文综述了CRISPR/Cas9技术在农业动物中的研究和应用进展,简述了该技术的脱靶效应及减少脱靶的主要方法,并展望了该技术的应用前景.
幸宇云, 杨强, 任军. CRISPR/Cas9基因组编辑技术在农业动物中的应用[J]. 遗传, 2016, 38(3): 217-226.
Yuyun Xing, Qiang Yang, Jun Ren. Application of CRISPR/Cas9 mediated genome editing in farm animals[J]. HEREDITAS(Beijing), 2016, 38(3): 217-226.
[1] Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol , 2001, 21(1): 289-297. [2] Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics , 2002, 161(3): 1169-1175. [3] Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet , 2010, 11(9): 636-646. [4] Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res , 2011, 39(1): 359-372. [5] Miller JC, Tan S, Qiao GJ, Barlow KA, Wang JB, Xia DF, Meng XD, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol , 2011, 29(2): 143-148. [6] Mahfouz MM, Li LX, Shamimuzzaman M, Wibowo A, Fang XY, Zhu JK. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA , 2011, 108(6): 2623-2628. [7] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science , 337(6096): 816-821. [8] 2013 Runners-Up. Genetic microsurgery for the masses. Science , 2013, 342(6165): 1434-1435. [9] Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science , 2010, 327(5962): 167-170. [10] Seed KD, Lazinski DW, Calderwood SB, Camilli A. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature , 2013, 494(7438): 489-491. [11] Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, van der Oost J, Koonin EV. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol , 2011, 9(6): 467-477. [12] Zhou JW, Xu QP, Yao J, Yu SM, Cao SZ. CRISPR/Cas9 genome editing technique and its application in site-directed genome modification of animals. Hereditas (Beijing) , 2015, 37(10): 1011-1020. 周金伟, 徐绮嫔, 姚婧, 余树民, 曹随忠. CRISPR/Cas9基因组编辑技术及其在动物基因组定点修饰中的应用. 遗传, 2015, 37(10): 1011-1020. [13] Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA- programmed genome editing in human cells. Elife , 2013, 2: e00471. [14] Cong L, Ann Ran F, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science , 2013, 339(6121): 819-823. [15] Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science , 2013, 339(6121): 823-826. [16] Lu XJ, Xue HY, Ke ZP, Chen JL, Ji LJ. CRISPR-Cas9: a new and promising player in gene therapy. J Med Genet , 2015, 52(5): 289-296. [17] Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet , 2015, 16(5): 299-311. [18] Feng WY, Dai YF, Mou LS, Cooper DKC, Shi DS, Cai ZM. The potential of the combination of CRISPR/Cas9 and pluripotent stem cells to provide human organs from chimaeric pigs. Int J Mol Sci , 2015, 16(3): 6545-6556. [19] Hai T, Teng F, Guo RF, Li W, Zhou Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res , 2014, 24(3): 372-375. [20] Zhou XQ, Xin JG, Fan NN, Zou QJ, Huang J, Ouyang Z, Zhao Y, Zhao BT, Liu ZM, Lai SS, Yi XL, Guo L, Esteban MA, Zeng YZ, Yang HQ, Lai LX. Generation of CRISPR/ Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci , 2015, 72(6): 1175-1184. [21] Honda A, Hirose A, Sankai T, Yasmin L, Yuzawa K, Honsho K, Izu H, Iguchi A, Ikawa M, Ogura A. Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9. Exp Anim , 2015, 64(1): 31-37. [22] Sato M, Miyoshi K, Nagao Y, Nishi Y, Ohtsuka M, Nakamura S, Sakurai T, Watanabe S. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the α-1,3-galactosyltransferase gene in porcine embryonic fibroblasts. Xenotransplantation , 2014, 21(3): 291-300. [23] Li P, Estrada JL, Burlak C, Montgomery J, Butler JR, Santos RM, Wang ZY, Paris LL, Blankenship RL, Downey SM, Tector M, Tector AJ. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation , 2015, 22(1): 20-31. [24] Estrada JL, Martens G, Li P, Adams A, Newell KA, Ford ML, Butler JR, Sidner R, Tector M, Tector J. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1 / CMAH / β4GalNT2 genes. Xenotransplantation , 2015, 22(3): 194-202. [25] Yang LH, Güell M, Niu D, George H, Lesha E, Grishin D, Aach J, Shrock E, Xu WH, Poci J, Cortazio R, Wilkinson RA, Fishman JA, Church G. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science , 2015, 350(6264): 1101-1104. [26] Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, Samuel MS, Mao JD, O'Gorman C, Walters EM, Murphy CN, Driver J, Mileham A, McLaren D, Wells KD, Prather RS. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro -derived oocytes and embryos. Biol Reprod , 2014, 91(3): 78. [27] Whitworth KM, Rowland RRR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, Samuel MS, Lightner JE, McLaren DG, Mileham AJ, Wells KD, Prather RS. Gene- edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol , 2016, 34(1): 20-22. [28] Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, Dos Santos-Neto PC, Nguyen TH, Crénéguy A, Brusselle L, Anegón I, Menchaca A. Efficient generation of Myostatin knock-out Sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One , 2015, 10(8): e0136690. [29] Ni W, Qiao J, Hu SW, Zhao XX, Regouski M, Yang M, Polejaeva IA, Chen CF. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One , 2014, 9(9): e106718. [30] Wang KK, Ouyang HS, Xie ZC, Yao CG, Guo NN, Li MJ, Jiao HP, Pang DX. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep , 2015, 5: 16623. [31] Jeong YH, Kim YJ, Kim EY, Kim SE, Kim J, Park MJ, Lee HG, Park SP, Kang MJ. Knock-in fibroblasts and transgenic blastocysts for expression of human FGF2 in the bovine β-casein gene locus using CRISPR/Cas9 nuclease-mediated homologous recombination. Zygote , 2015, 22: 1-15. [32] Brooks K, Burns G, Spencer TE. Biological roles of Hydroxysteroid (11-Beta) Dehydrogenase 1 ( HSD11B1 ), HSD11B2 , and Glucocorticoid Receptor ( NR3C1 ) in Sheep conceptus elongation. Biol Reprod , 2015, 93(2): 38. [33] Ma SY, Chang JS, Wang XG, Liu YY, Zhang JD, Lu W, Gao J, Shi R, Zhao P, Xia QY. CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu 70 in Bombyx mori . Sci Rep , 2014, 4: 4489. [34] Wei W, Xin HH, Roy B, Dai JB, Miao YG, Gao GJ. Heritable genome editing with CRISPR/Cas9 in the silkworm, Bombyx mori . PLoS One , 2014, 9(7): e101210. [35] Zhang ZJ, Aslam AFM, Liu XJ, Li MW, Huang YP, Tan AJ. Functional analysis of Bombyx Wnt1 during embryogenesis using the CRISPR/Cas9 system. J Insect Physiol , 2015, 79: 73-79. [36] Li ZQ, You L, Zeng BS, Ling L, Xu J, Chen X, Zhang ZJ, Palli SR, Huang YP, Tan AJ. Ectopic expression of ecdysone oxidase impairs tissue degeneration in Bombyx mori . Proc Biol Sci , 2015, 282(1809): 20150513. [37] Zhao YC, Dai Z, Liang Y, Yin M, Ma KY, He M, Ouyang HS, Teng CB. Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Sci Rep , 2014, 4: 3943. [38] Kwon J, Namgoong S, Kim NH. CRISPR/Cas9 as tool for functional study of genes involved in preimplantation embryo development. PLoS One , 2015, 10(3): e0120501. [39] Heo YT, Quan XY, Xu YN, Baek S, Choi H, Kim NH, Kim J. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells. Stem Cells Dev , 2015, 24(3): 393-402. [40] Véron N, Qu ZD, Kipen PAS, Hirst CE, Marcelle C. CRISPR mediated somatic cell genome engineering in the chicken. Dev Biol , 2015, 407(1): 68-74. [41] Yan QM, Zhang QJ, Yang HQ, Zou QJ, Tang CC, Fan NN, Lai LX. Generation of multi-gene knockout rabbits using the Cas9/gRNA system. Cell Regen (Lond) , 2014, 3(1): 12. [42] Liu YY, Ma SY, Wang XG, Chang JS, Gao J, Shi R, Zhang JD, Lu W, Liu Y, Zhao P, Xia QY. Highly efficient multiplex targeted mutagenesis and genomic structure variation in Bombyx mori cells using CRISPR/Cas9. Insect Biochem Mol Biol , 2014, 49: 35-42. [43] Su YH, Lin TY, Huang CL, Tu CF, Chuang CK. Construction of a CRISPR-Cas9 system for pig genome targeting. Anim Biotechnol , 2015, 26(4): 279-288. [44] Wang XL, Zhou JW, Cao CW, Huang JJ, Hai T, Wang YF, Zheng QT, Zhang HY, Qin GS, Miao XN, Wang HM, Cao SH, Zhou Q, Zhao JG. Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs. Sci Rep , 2015, 5: 13348. [45] He ZY, Shi X, Du BZ, Qin YF, Cong PQ, Chen YS. Highly efficient enrichment of porcine cells with deletions induced by CRISPR/Cas9 using dual fluorescence selection. J Biotechnol , 2015, 214: 69-74. [46] Wu JQ, Mei G, Liu ZG, Chen YS, Cong PQ, He ZY. Improving gene targeting efficiency on pig IGF2 mediated by ZFNs and CRISPR/Cas9 by using SSA reporter system. Hereditas (Beijing) , 2015, 37(1): 55-62. 吴金青, 梅瑰, 刘志国, 陈瑶生, 丛佩清, 何祖勇. 应用SSA报告载体提高ZFN和CRISPR/Cas9对猪 IGF2 基因的打靶效率. 遗传, 2015, 37(1): 55-62. [47] Wu XB, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen SD, Jaenisch R, Zhang F, Sharp PA. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol , 2014, 32(7): 670-676. [48] Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol , 2014, 32(4): 347-355. [49] Ann Ran F, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell , 2013, 154(6): 1380-1389. [50] Fu YF, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol , 2014, 32(3): 279-284. [51] Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol , 2014, 32(6): 569-576. [52] Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol , 2014, 32(6): 577-582. [53] Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li YQ, Fine EJ, Wu XB, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol , 2013, 31(9): 827-832. [54] Fu YF, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol , 2013, 31(9): 822-826. [55] Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res , 2014, 24(6): 1020-1027. [56] Veres A, Gosis BS, Ding QR, Collins R, Ragavendran A, Brand H, Erdin S, Cowan CA, Talkowski ME, Musunuru K. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell , 2014, 15(1): 27-30. [57] Smith C, Gore A, Yan W, Abalde-Atristain L, Li Z, He CX, Wang Y, Brodsky RA, Zhang K, Cheng LZ, Ye ZH. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell , 2014, 15(1): 12-13. [58] Duan JZ, Lu GQ, Xie Z, Lou ML, Luo J, Guo L, Zhang Y. Genome-wide identification of CRISPR/Cas9 off-targets in human genome. Cell Res , 2014, 24(8): 1009-1012. [59] Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. Genome- wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol , 2014, 32(7): 677-683. [60] Zheng W, Gu F. Progress of application and off-target effects of CRISPR/Cas9. Hereditas (Beijing) , 2015, 37(10): 1003-1010. 郑武, 谷峰. CRISPR/Cas9的应用及脱靶效应研究进展. 遗传, 2015, 37 (10): 1003-1010. [61] Platt RJ, Chen SD, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng GP, Sharp PA, Zhang F. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell , 2014, 159(2): 440-455. [62] Xue W, Chen SD, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai WX, Yang G, Bronson R, Crowley DG, Zhang F, Anderson DG, Sharp PA, Jacks T. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature , 2014, 514(7522): 380-384. [63] Palgrave CJ, Gilmour L, Stewart Lowden C, Lillico SG, Mellencamp MA, Whitelaw CBA. Species-specific variation in RELA underlies differences in NF-κB activity: a potential role in African swine fever pathogenesis. J Virol , 2011, 85(12): 6008-6014. |
[1] | 郑晓飞,黄海燕,吴强. 染色质架构蛋白CTCF调控UGT1基因簇的表达[J]. 遗传, 2019, 41(6): 509-523. |
[2] | 王珏, 黄娟, 许蕊. 利用CRISPR/Cas9和piggyBac实现果蝇基因组无缝编辑[J]. 遗传, 2019, 41(5): 422-429. |
[3] | 张楷, 刘蔚, 刘小凤, 陈瑶生, 刘小红, 何祖勇. 利用CRISPR/Cas9系统构建人HPRT1基因定点突变细胞株[J]. 遗传, 2019, 41(10): 939-949. |
[4] | 刘恒, 李东明, 朱兰玉, 赖乐锦, 闫婉云, 陆玉双, 韦伊, 黄月琪, 方媚, 苏元港, 杨芳, 舒伟. 利用CRISPR/Cas9敲除人源细胞系中LMNA基因的研究[J]. 遗传, 2019, 41(1): 66-75. |
[5] | 任云晓, 肖茹丹, 娄晓敏, 方向东. 基因编辑技术及其在基因治疗中的应用[J]. 遗传, 2019, 41(1): 18-27. |
[6] | 张桂珊, 杨勇, 张灵敏, 戴宪华. 机器学习方法在CRISPR/Cas9系统中的应用[J]. 遗传, 2018, 40(9): 704-723. |
[7] | 刘海龙, 谌阳, 高杨, 周玲, 韩晓松, 赵长志, 杨高娟, 陈毅龙, 杨慧, 谢胜松. 靶向miRNA前体不同类型sgRNA的丰度及特异性评估[J]. 遗传, 2018, 40(7): 561-571. |
[8] | 唐浚博, 曹浩伟, 许蕊, 张丹丹, 黄娟. 果蝇睾丸基因敲除突变体的构建及表型分析[J]. 遗传, 2018, 40(6): 478-487. |
[9] | 李慧卿, 陈超, 陈冉冉, 宋雪薇, 李佶娜, 朱延明, 丁晓东. 利用CRISPR/Cas9双基因敲除系统初步解析大豆GmSnRK1.1和GmSnRK1.2对ABA及碱胁迫的响应[J]. 遗传, 2018, 40(6): 496-507. |
[10] | 梁彩娇, 孟繁梅, 艾云灿. 基于CRISPR/Cas系统的噬菌体基因组编辑[J]. 遗传, 2018, 40(5): 378-389. |
[11] | 童晓玲,方春燕,盖停停,石津,鲁成,代方银. CRISPR/Cas9系统在昆虫中的应用[J]. 遗传, 2018, 40(4): 266-278. |
[12] | 谢晶, 范辰, 张景龙, 张仕强. Ash2l-1/Ash2l-2在小鼠胚胎干细胞中的表达特异性及互补效应[J]. 遗传, 2018, 40(3): 237-249. |
[13] | 刘佳伟,洪涛,秦鑫,梁英民,张萍. β-血红蛋白病基因组编辑治疗的研究进展[J]. 遗传, 2018, 40(2): 95-103. |
[14] | 辛高伟, 胡熙璕, 王克剑, 王兴春. Cas9蛋白变体VQR高效识别水稻NGAC前间区序列邻近基序[J]. 遗传, 2018, 40(12): 1112-1119. |
[15] | 刘旭, 张平, 张晓枫, 李兴, 白宇, 贾克荣, 郭晓东, 张豪, 马晓燕, 仓明, 刘东军, 郭旭东. 利用CRISPR/Cas9系统构建FGF21基因敲除小鼠模型[J]. 遗传, 2018, 40(1): 66-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: