遗传 ›› 2022, Vol. 44 ›› Issue (1): 80-91.doi: 10.16288/j.yczz.21-305
李永光1,2(), 金玉环1, 郭力1, 艾昊2, 李瑞宁2, 黄先忠2,3()
收稿日期:
2021-08-24
修回日期:
2021-11-15
出版日期:
2022-01-20
发布日期:
2022-01-06
通讯作者:
黄先忠
E-mail:zongheng1476408@163.com;huangxz@ahstu.edu.cn
作者简介:
李永光,在读硕士研究生,专业方向:生物化学与分子生物学。E-mail: 基金资助:
Yongguang Li1,2(), Yuhuan Jin1, Li Guo1, Hao Ai2, Ruining Li2, Xianzhong Huang2,3()
Received:
2021-08-24
Revised:
2021-11-15
Online:
2022-01-20
Published:
2022-01-06
Contact:
Huang Xianzhong
E-mail:zongheng1476408@163.com;huangxz@ahstu.edu.cn
Supported by:
摘要:
PEBP (phosphatidylethanolamine-binding protein)家族包含保守的磷脂酰乙醇胺结合蛋白结构域,其中FT和TFL1蛋白构成植物成花素-反成花素系统调控植物的开花时间和株型结构被广泛关注。小鼠耳芥(Arabidopsis pumila)是早春短命植物,生长在古尔班通古特沙漠南缘荒漠地带,对环境具有较好的适应性。本研究对小鼠耳芥PEBP基因家族进行全基因组鉴定,发现其基因组包含11个PEBP基因(1个MFT、2个FT、2个TSF、2个TFL1、2个CEN和2个BFT),均由4个外显子与3个内含子组成。共线性分析表明,小鼠耳芥与拟南芥(A. thaliana)、琴叶拟南芥(A. lyrata) PEBP基因间存在11对共线性关系,PEBP家族在小鼠耳芥基因组中发生了明显的扩张,并且ApPEBP基因复制类型为全基因组复制/片段复制。组织表达分析发现ApMFT在种子中高表达,ApFT和ApBFT主要在花和果荚中表达,ApTFL1在茎尖中高表达,但ApCEN在根中高表达。进一步分析了6个ApPEBP基因在4种非生物胁迫下的表达特征,发现在10% PEG6000模拟干旱胁迫下,ApPEBP基因整体上调表达,在低温(4℃)胁迫下整体下调表达。在盐胁迫(250 mmol/L NaCl)下,ApFT1/2下调表达,ApTFL1-1/2先下调表达后上调表达,而ApCEN1/2明显上调表达。高温(40℃)胁迫下,ApFT1/2和ApTFL1-1/2显著下调表达,但ApCEN1/2上调表达。综上,ApCEN1/2在盐、干旱和高温胁迫下均显著上调表达。蛋白互作网络分析表明,ApPEBP主要与开花通路中的相关蛋白及核糖体蛋白互作。推测ApPEBP基因在小鼠耳芥响应荒漠逆境调节生长发育、开花转变过程中起着重要的作用。
李永光, 金玉环, 郭力, 艾昊, 李瑞宁, 黄先忠. 小鼠耳芥PEBP基因家族全基因组鉴定及表达分析[J]. 遗传, 2022, 44(1): 80-91.
Yongguang Li, Yuhuan Jin, Li Guo, Hao Ai, Ruining Li, Xianzhong Huang. Genome-wide identification and expression analysis of the PEBP genes in Arabidopsis pumila[J]. Hereditas(Beijing), 2022, 44(1): 80-91.
附表1
实时荧光定量PCR引物序列表"
序列 | 引物名称 | 上游引物序列(5′→3′) | 下游引物序列(5′→3′) | 引物用途 |
---|---|---|---|---|
1 | qRT-ApMFT | TGATCCTTTGGTGGTCGGAA | CAGACATATTGGCGGTTGGG | 实时定量PCR |
2 | qRT-ApFT1 | TAGTAAGCCGAGTTGTTGGAGA | AGAAGGCCTTAGATCCAAACCA | |
3 | qRT-ApFT2 | GCAGAGTTGTTGGAGACGTTC | AGGCCTTAGATCCAAGCCATT | |
4 | qRT-ApTSF1 | TAGGGTTACTTATGGCCAACGA | GTAGAAGTTCCTGAGGTCGTCT | |
5 | qRT-ApTSF2 | CTGGTTTGTGTTGGTGACTGAT | CTCGTAGCACACCATCTCATTG | |
6 | qRT-ApTFL1-1 | GGTGGTGATCTCAGATCCTTCT | GCTCACCACCTCTTTTCCAAAT | |
7 | qRT-ApTFL1-2 | TTCCTCTGTCTCCTCCAAACC | TCGTTACGATCCAGTGCAGAT | |
8 | qRT-ApBFT1 | CCTCTCTAAACCTCGCGTTG | CTAGGTGCATCAGGGTCCAT | |
9 | qRT-ApBFT2 | TCCAAGCGTGACAATGAGAG | CAACGCGAGGTTTAGAGAGG | |
10 | qRT-ApCEN1 | CTCGGCCAAACATAGGGATA | CGGTTCTGCTTGAACAACAA | |
11 | qRT-ApCEN2 | GCCTCGACCAAACATAGGAA | CGCAAATTCTCGAGTGTTGA | |
12 | qRT-ApGAPDH | CTCCCATGTTTGTTGTTGGTGTCA | CTTCCACCTCTCCAGTCCTTCATT | |
13 | BD-ApCEN1 | CGGAATTCATGGCTAGGATTTCCTCAGAC | CGGGATCCTCAACGGCGTCTAGCTGCGGT | 酵母双杂 |
14 | AD-ApRPL5 | CGGAATTCATGGCGTCTCCTTCGCTTCT | CGGGATCCTCATCTCTTTGTCTTTCCTTTTCC |
附表2
小鼠耳芥PEBP基因家族信息"
基因名称 | 基因ID | 染色体号 | 染色体上 位置(bp) | 氨基酸长度(aa) | 分子量(kDa) | 等电点 | 亚细胞定位 |
---|---|---|---|---|---|---|---|
ApBFT1 | evm.model.9__7_CONTIGS_16776222.1453 | Ap11 | 2193322-2194294 | 177 | 20.1 | 8.76 | 细胞核与细胞质 |
ApBFT2 | evm.model.12__9_CONTIGS_14700693.579 | Ap16 | 2804281-2805282 | 177 | 20.1 | 8.97 | 细胞核与细胞质 |
ApCEN1 | evm.model.7__7_CONTIGS_17117682.2650 | Ap7 | 8559887-8560979 | 175 | 19.83 | 7.02 | 细胞核与细胞质 |
ApCEN2 | evm.model.10__7_CONTIGS_16195798.1995 | Ap14 | 8584783-8585893 | 175 | 19.83 | 7.02 | 细胞核与细胞质 |
ApFT1 | evm.model.11__11_CONTIGS_16209776.2341 | Ap10 | 10023935-10026225 | 175 | 19.72 | 7.76 | 细胞核与细胞质 |
ApFT2 | evm.model.3__5_CONTIGS_18323972.2179 | Ap15 | 6874127-6876615 | 175 | 19.71 | 7.75 | 细胞核与细胞质 |
ApMFT | evm.model.1__5_CONTIGS_22361435.1653 | Ap2 | 6368463-6370804 | 173 | 19.12 | 7.93 | 细胞核与细胞质 |
ApTFL1-1 | evm.model.4__12_CONTIGS_18100624.1250 | Ap4 | 8915426-8916419 | 177 | 20.16 | 9.59 | 细胞核与细胞质 |
ApTFL1-2 | evm.model.6__5_CONTIGS_17268225.3213 | Ap5 | 16188501-16189686 | 178 | 20.25 | 9.59 | 细胞核与细胞质 |
ApTSF1 | evm.model.0__8_CONTIGS_29314649.4152 | Ap6 | 9022426-9024468 | 175 | 19.67 | 7.75 | 细胞核与细胞质 |
ApTSF2 | evm.model.0__8_CONTIGS_29314649.839 | Ap12 | 3822734-3824876 | 177 | 19.94 | 8.52 | 细胞核与细胞质 |
[1] |
Banfield MJ, Barker JJ, Perry AC, Brady RL. Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction. Structure, 1998, 6(10):1245-1254.
pmid: 9782050 |
[2] |
Jin S, Nasim Z, Susila H, Ahn JH. Evolution and functional diversification of FLOWERING LOCUS T/TERMINAL FLOWER 1 family genes in plants. Semin Cell Dev Biol, 2021, 109:20-30.
doi: 10.1016/j.semcdb.2020.05.007 |
[3] |
Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, Lascoux M, Lagercrantz U. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol, 2011, 156(4):1967-1977.
doi: 10.1104/pp.111.176206 pmid: 21642442 |
[4] |
Xi WY, Liu C, Hou XL, Yu H. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell, 2010, 22(6):1733-1748.
doi: 10.1105/tpc.109.073072 |
[5] |
Higuchi Y. Florigen and anti-florigen: flowering regulation in horticultural crops. Breed Sci, 2018, 68(1):109-118.
doi: 10.1270/jsbbs.17084 |
[6] |
Eshed Y, Lippman ZB. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science, 2019, 366(6466): eaax0025.
doi: 10.1126/science.aax0025 |
[7] |
Kinoshita T, Ono N, Hayashi Y, Morimoto S, Nakamura S, Soda M, Kato Y, Ohnishi M, Nakano T, Inoue SI, Shimazaki KI. FLOWERING LOCUS T regulates stomatal opening. Curr Biol, 2011, 21(14):1232-1238.
doi: 10.1016/j.cub.2011.06.025 |
[8] |
Krieger U, Lippman ZB, Zamir D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet, 2010, 42(5):459-463.
doi: 10.1038/ng.550 pmid: 20348958 |
[9] |
Navarro C, Abelenda JA, Cruz-Oró E, Cuéllar CA, Tamaki S, Silva J, Shimamoto K, Prat S. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature, 2011, 478(7367):119-122.
doi: 10.1038/nature10431 |
[10] |
Lee R, Baldwin S, Kenel F, McCallum J, Macknight R,. FLOWERING LOCUS T genes control onion bulb formation and flowering. Nat Commun, 2013, 4:2884.
doi: 10.1038/ncomms3884 |
[11] |
Abelenda JA, Bergonzi S, Oortwijn M, Sonnewald S, Du MR, Visser RGF, Sonnewald U, Bachem CWB. Source- sink regulation is mediated by interaction of an FT homolog with a SWEET protein in potato. Curr Biol, 2019, 29(7): 1178-1186.e6.
doi: S0960-9822(19)30157-5 pmid: 30905604 |
[12] |
Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence commitment and architecture in Arabidopsis. Science, 1997, 275(5296):80-83.
pmid: 8974397 |
[13] |
Zhang B, Li CX, Li Y, Yu H. Mobile TERMINAL FLOWER1 determines seed size in Arabidopsis. Nat Plants, 2020, 6(9):1146-1157.
doi: 10.1038/s41477-020-0749-5 pmid: 32839516 |
[14] |
Corbesier L, Vincent C, Jang S, Fornara F, Fan QZ, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 2007, 316(5827):1030-1033.
pmid: 17446353 |
[15] |
Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science, 2007, 316(5827):1033-1036.
doi: 10.1126/science.1141753 |
[16] |
Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 2005, 309(5737):1052-1056.
doi: 10.1126/science.1115983 |
[17] |
Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 2005, 309(5737):1056-1059.
doi: 10.1126/science.1114358 |
[18] |
Hanano S, Goto K. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell, 2011, 23(9):3172-3184.
doi: 10.1105/tpc.111.088641 |
[19] |
Collani S, Neumann M, Yant L, Schmid M. FT modulates genome-wide DNA-binding of the bZIP transcription factor FD. Plant Physiol, 2019, 180(1):367-380.
doi: 10.1104/pp.18.01505 pmid: 30770462 |
[20] |
Romera-Branchat M, Severing E, Pocard C, Ohr H, Vincent C, Née G, Martinez-Gallegos R, Jang S, Andrés F, Madrigal P, Coupland G. Functional divergence of the Arabidopsis florigen-interacting bZIP transcription factors FD and FDP. Cell Rep, 2020, 31(9):107717.
doi: S2211-1247(20)30694-X pmid: 32492426 |
[21] |
Zhu Y, Klasfeld S, Jeong CW, Jin R, Goto K, Yamaguchi N, Wagner D. TERMINAL FLOWER 1-FD complex target genes and competition with FLOWERING LOCUS T. Nat Commun, 2020, 11(1):5118.
doi: 10.1038/s41467-020-18782-1 |
[22] | Mao ZM. Early spring ephemeral plant area characteristics. Arid Zone Res, 1992, 9(1):11-12. |
毛祖美. 早春短命植物区系特点. 干旱区研究, 1992, 9(1):11-12. | |
[23] | Yuan SF, Tang HP. Research advances in the eco-physiological characteristics of ephemerals adaptation to habitats. Acta Prataculturae Sinica, 2010, 19(1):240-247. |
袁素芬, 唐海萍. 短命植物生理生态特性对生境的适应性研究进展. 草业学报, 2010, 19(1):240-247. | |
[24] | Mao ZM, An ZX, Zhou GL, Yang CY, Han YL, Li XY, Zhang YF. Flora of Xinjiang (vol. 2, part 2). Urumqi: Xinjiang Science and Technology Health Press, 1995, 145-146. |
毛祖美, 安争夕, 周桂玲, 杨昌友, 韩英兰, 李学禹, 张彦福. 《新疆植物志》(第二卷第二分册). 乌鲁木齐: 新疆科技卫生出版社, 1995, 145-146. | |
[25] |
Huang XZ, Yang LF, Jin YH, Lin J, Liu F. Generation, annotation, and analysis of a large-scale expressed sequence tag library fromArabidopsis pumila to explore salt-responsive genes. Front Plant Sci, 2017, 8:955.
doi: 10.3389/fpls.2017.00955 |
[26] |
Jin YH, Liu F, Huang W, Sun Q, Huang XZ. Identification of reliable reference genes for qRT-PCR in the ephemeral plant Arabidopsis pumila based on full-length transcriptome data. Sci Rep, 2019, 9(1):8408.
doi: 10.1038/s41598-019-44849-1 |
[27] | Li XC, Kang KC, Huang XZ, Fan YB, Song MM, Huang YJ, Ding JJ. Genome-wide identification, phylogenetic analysis and expression profiling of the MKK gene family in Arabidopsis pumila. Hereditas(Beijing), 2020, 42(4):403-421. |
李晓翠, 康凯程, 黄先忠, 范永斌, 宋苗苗, 黄韵杰, 丁佳佳. 小拟南芥MKK基因家族全基因组鉴定及进化和表达分析. 遗传, 2020, 42(4):403-421. | |
[28] | Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and Clustal X. Curr Protoc Bioinformatics, 2002, Chapter 2: Unit 2.3. |
[29] |
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 2013, 30(12):2725-2729.
doi: 10.1093/molbev/mst197 |
[30] |
Wang YP, Tang HB, DeBarry JD, Tan X, Li JP, Wang XY, Lee TH, Jin HZ, Marler B, Guo H, Kissinger JC, Paterson AH. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2012, 40(7):e49.
doi: 10.1093/nar/gkr1293 |
[31] |
Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13(8):1194-1202.
doi: 10.1016/j.molp.2020.06.009 |
[32] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001, 25(4):402-408.
pmid: 11846609 |
[33] |
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13(11):2498-2504.
pmid: 14597658 |
[34] |
Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 1999, 11(5):949-956.
pmid: 10330478 |
[35] |
Hartmann U, Höhmann S, Nettesheim K, Wisman E, Saedler H, Huijser P. Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J, 2000, 21(4):351-360.
pmid: 10758486 |
[36] |
Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. LEAFY controls floral meristem identity in Arabidopsis. Cell, 1992, 69(5):843-859.
pmid: 1350515 |
[37] |
Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J, 1999, 18(17):4679-4688.
pmid: 10469647 |
[38] | Peng FY, Hu ZQ, Yang RC. Genome-wide comparative analysis of flowering-related genes in arabidopsis, wheat, and barley. Int J Plant Genomics, 2015, 2015:874361. |
[39] |
Nakagawa M, Shimamoto K, Kyozuka J. Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J, 2002, 29(6):743-750.
pmid: 12148532 |
[40] |
Liu YY, Yang KZ, Wei XX, Wang XQ. Revisiting the phosphatidylethanolamine-binding protein (PEBP) gene family reveals crypticFLOWERING LOCUS T gene homologs in gymnosperms and sheds new light on functional evolution. New Phytol, 2016, 212(3):730-744.
doi: 10.1111/nph.14066 pmid: 27375201 |
[41] |
Zhang TC, Qiao Q, Novikova PY, Wang Q, Yue JP, Guan YL, Ming SP, Liu TM, De J, Liu YX, Al-Shehbaz IA, Sun H, Van Montagu M, Huang JL, Van de Peer Y, Qiong L,. Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude. Proc Natl Acad Sci USA, 2019, 116(14):7137-7146.
doi: 10.1073/pnas.1817580116 |
[42] |
Mager WH. Control of ribosomal protein gene expression. Biochim Biophys Acta, 1988, 949(1):1-15.
pmid: 3275463 |
[43] |
Van Minnebruggen A, Neyt P, De Groeve S, Coussens G, Ponce MR, Micol JL, Van Lijsebettens M. The ang3 mutation identified the ribosomal protein gene RPL5B with a role in cell expansion during organ growth. Physiol Plant, 2010, 138(1):91-101.
doi: 10.1111/j.1399-3054.2009.01301.x pmid: 19878482 |
[44] |
Danilevskaya ON, Meng X, Hou ZL, Ananiev EV, Simmons CR. A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol, 2008, 146(1):250-264.
doi: 10.1104/pp.107.109538 pmid: 17993543 |
[45] |
Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science, 1999, 286(5446):1960-1962.
pmid: 10583960 |
[46] |
Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E. Control of inflorescence architecture in Antirrhinum. Nature, 1996, 379(6568):791-797.
doi: 10.1038/379791a0 |
[47] |
Conti L, Bradley D. TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell, 2007, 19(3):767-778.
doi: 10.1105/tpc.106.049767 |
[48] |
Chung KS, Yoo SY, Yoo SJ, Lee JS, Ahn JH. BROTHER OF FT AND TFL1 (BFT), a member of the FT/TFL1 family, shows distinct pattern of expression during the vegetative growth of Arabidopsis. Plant Signal Behav, 2010, 5(9):1102-1104.
doi: 10.4161/psb.5.9.12415 |
[1] | 朱前彬, 甘志承, 李晓翠, 张英杰, 赵合明, 黄先忠. 小鼠耳芥MAPKKK基因家族全基因组鉴定及进化与表达[J]. 遗传, 2022, 44(11): 1044-1055. |
[2] | 李泽琴,李锦涛,邴杰,张根发. 拟南芥APX家族基因在植物生长发育与非生物逆境胁迫响应中的作用分析[J]. 遗传, 2019, 41(6): 534-547. |
[3] | 徐妙云, 朱佳旭, 张敏, 王磊. 植物miR169/NF-YA调控模块研究进展[J]. 遗传, 2016, 38(8): 700-706. |
[4] | 朱丽萍,于壮,邹翠霞,李秋莉. 植物逆境相关启动子及功能[J]. 遗传, 2010, 32(3): 229-234. |
[5] | 许振华,谢传晓. 植物microRNA与逆境响应研究进展[J]. 遗传, 2010, 32(10): 1018-1030. |
[6] | 沈亚欧,林海建,张志明,高世斌,潘光堂. 植物逆境miRNA研究进展[J]. 遗传, 2009, 31(3): 227-235. |
[7] | 柳展基,邵凤霞,唐桂英,单雷,毕玉平. 一个新的玉米NAC类基因(ZmNAC1)的克隆与分析[J]. 遗传, 2009, 31(2): 199-205. |
[8] | 林海建,张志明,沈亚欧,高世斌,潘光堂. 基因芯片研究植物逆境基因表达新进展[J]. 遗传, 2009, 31(12): 1192-1204. |
[9] | 王平荣,邓晓建,高晓玲,陈静,万佳,姜华,徐正君. DREB转录因子研究进展[J]. 遗传, 2006, 28(3): 369-374. |
[10] | 阮松林,马华升,王世恒,忻 雅,钱丽华,童建新,赵杭苹,王 杰. 植物蛋白质组学研究进展Ⅱ.蛋白质组技术在植物生物学研究中的应用[J]. 遗传, 2006, 28(12): 1633-1633~1648. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: