遗传 ›› 2010, Vol. 32 ›› Issue (10): 1018-1030.doi: 10.3724/SP.J.1005.2010.01018
许振华, 谢传晓
收稿日期:
2010-01-22
修回日期:
2010-03-22
出版日期:
2010-10-20
发布日期:
2010-10-20
通讯作者:
谢传晓
E-mail:cxxie@caas.net.cn
基金资助:
国家自然科学基金项目(编号:30871535)资助
XU Zhen-Hua, XIE Chuan-Xiao
Received:
2010-01-22
Revised:
2010-03-22
Online:
2010-10-20
Published:
2010-10-20
Contact:
XIE Chuan-Xiao
E-mail:cxxie@caas.net.cn
摘要: MicroRNA (miRNA)是一类在生物体内普遍存在的非编码、长度约16~29 nt的小分子RNA, 由内源基因编码, 于转录后水平通过介导靶mRNA降解或翻译抑制调控基因表达, 是真核细胞基因表达的重要调控因子。随着生物信息学与研究技术的发展, 越来越多的植物miRNA得到预测和验证。逆境胁迫下, 植物体诱导或下调相关miRNA表达, 参与植物逆境生理调节与适应。文章综述了植物miRNA生物合成、与靶基因的作用方式、生物功能以及逆境胁迫响应miRNA, 概要介绍了目前常用的miRNA研究方法。
许振华,谢传晓. 植物microRNA与逆境响应研究进展[J]. 遗传, 2010, 32(10): 1018-1030.
HU Zhen-Hua, XIE Chuan-Xiao. Advances in plant microRNA and stresses response[J]. HEREDITAS, 2010, 32(10): 1018-1030.
[1] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281–297. [2] Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T. A uniform system for microRNA annotation. RNA, 2003, 9(3): 277–279. [3] Zhang BH, Stellwag EJ, Pan XP. Large-scale genome analysis reveals unique features of microRNAs. Gene, 2009, 443(1–2): 100–109. [4] Mica E, Gianfranceschi L, Pè ME. Characterization of five microRNA families in maize. J Exp Bot, 2006, 57(11): 2601–2612. [5] Humphreys DT, Westman BJ, Martin DI, Preiss T. Mi-croRNAs control translation initiation by inhibiting eu-karyotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA, 2005, 102(47): 16961–16966. [6] Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J, Padova FD, Lin SC, Gram H, Han J. Involvement of mi-croRNA in AU-rich element-mediated mRNA instability. Cell, 2005, 120(5): 623–634. [7] Vaucheret H. Post-transcriptional small RNA pathwaysin plants: mechanisms and regulations. Genes Dev, 2006, 20(7): 759–771. [8] Lagos-Quintana M, Rauhut R, Lendeckel W, Tusch1 T. Identification of novel genes coding for small expressed RNAs. Science, 2001, 294(5543): 853–858. [9] Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G. MiRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev, 2002, 16(6): 720–728. [10] Voinnet O. Origin, Biogenesis, and Activity of Plant Mi-croRNAs. Cell, 2009, 136(4): 669–687. [11] Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 2004, 23(20): 4051–4060. [12] Zhang B, Pan X, Stellwag EJ. Identification of soybean micro-RNAs and their targets. Planta, 2008, 229(1): 161–182. [13] Lee RC, Feinbaum RL, Ambros V. The C.elegans hetero-chronic gene lin-4 encodes small RNAs withantisense complementarity to lin-14. Cell, 1993, 75(5): 843–854. [14] Jian XY, Zhang L, Li GL, Zhang L, Wang XJ, Cao XF, Fang XH, Chen F, Identification of novel stress-regulated microRNAs from Oryza sativa L. Genomics, 2010, 95(1): 47–55. [15] Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004, 16(8): 2001–2019. [16] Zhang BH, Pan XP, Anderson TA. Identification of 188 conserved maize microRNAs and their targets. FEBS Lett, 2006, 580(15): 3753–3762. [17] Xie FL, Huang SQ, Gou K, Xiang AL, Zhu YY, Nie L, Yang ZM. Computational identification of novel mi-croRNAs and targets in Brassica napus. FEBS Lett, 2007, 581(7): 1464–1474. [18] Sunkar R, Jagadeeswaran G. In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol, 2008, 8: 37–49. [19] Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR. Identification of nutri-ent-responsive Arabidopsis and rapeseed micrornas by comprehensive real-time polymerase chain reaction pro-filing and small RNA sequencing. Plant Physiol, 2009, 150(3): 1541–1555. [20] Zhou XF, Wang GD, Sutoh K, Zhu JK, Zhang WX. Identi-fication of cold-inducible microRNAs in plants by tran-scriptome analysis. Biochim Biophys Act, 2008, 1779(11): 780–788. [21] Zhao BT, Liang RQ, Ge LF, Li W, Xiao HS, Lin HX, Ruan KC, Jin YX. Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun, 2007, 354(2): 585–590. [22] Jones-Rhoades MW, Bartel DP. Computational identifica-tion of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 2004, 14(6): 787–799. [23] Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 2006, 34(Database issue): D140–D144. [24] Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev, 2006, 20(24): 3407–3425. [25] Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell, 2005, 17(8): 2186–2203. [26] Phillipsa JR, Dalmayb T, Bartels D. The role of small RNAs in abiotic stress. FEBS Lett, 2007, 581(19): 3592–3597. [27] Wang Y, Stricker HM, Gou D, Liu L. MicroRNA: past and present. Front Biosci, 2007, 12: 2316–2329. [28] Yin JQ, Zhao RC. Identifying expression of new small RNAs by microarrays. Methods, 2007, 43(2): 123–130. [29] Floyd SK, Bowman JL. Ancient microRNA target se-quences in plants. Nature, 2004, 428(6982): 485–486. [30] Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet, 2004, 36(12): 1282–1290. [31] Millar AA, Waterhouse PM. Plant and animal microRNAs: similarities and differences. Funct Integr Genomics, 2005, 5(3): 129–135. [32] Kong W, Zhao JJ, He LL, Cheng JQ. Strategies for profil-ing microRNA expression. J Cell Physiol, 2009, 218(1): 22–25. [33] Shomron N, Levy C. MicroRNA-biogenesis and Pre-mRNA splicing crosstalk. J Biomed Biotechnol, 2009, 2009: 594678. [34] Zhang BH, Pan XP, Anderson TA. Indentification of 188 conserved maize microRNAs and the its targets. FEBS Lett, 2006, 580(15): 3752–3762. [35] Lai EC, Tomancak P, Williams RW, Rubin GM. Computa-tional identification of Drosophila microRNA genes. Genome Biol, 2003, 4(7): R42. [36] Tang GL, Reinhart BJ, Bartel DP. A biochemical frame-work for RNA silencing in plants. Genes Dev, 2003, 17(1): 49–63. [37] Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis develop-ment and miRNA unction. Dev Cell, 2003, 4(2): 205–217. [38] Llave C, Xie Z, Kasschau KD, Carrington JC. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabi-dopsis miRNA. Science, 2002, 297(5589): 2053–2056. [39] Qi Y, Denli AM, Hannon GJ. Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell, 2005, 19(3): 421–428. [40] Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets. Cell, 2002, 110(4): 513–520. [41] Vazquez F, Gasciolli V, Crété P, Vaucheret H. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttrans-criptional transgene silencing. Curr Biol, 2004, 14(4): 346–351. [42] Vaucheret H, Vazquez F, Crété P, Bartel DP. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev, 2004, 18(10): 1187–1197. [43] Wightman B, Ha I, Ruvkun G. Posttranscriptional regula-tion of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993, 75(5): 855–862. [44] Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell, 2002, 9(6): 1327–1333. [45] Gebauer F, Hentze MW. Molecular mechanisms of trans-lational control. Nat Rev Mol Cell Biol, 2004, 5(10): 827–835. [46] Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science, 2005, 309(5740): 1573–1576. [47] Chen XM. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower Development. Science, 2004, 303(5666): 2022–2025. [48] Chen XM. MicroRNA biogenesis and function in plants. FEBS Lett, 2005, 579(26): 5923–5931. [49] Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol, 2006, 57: 19–53. [50] Mathieu J, Yant LJ, Murdter F, Kuttner F, Schmid M. Re-pression of Flowering by the miR172 Target SMZ. PLoS Biol, 2009, 7(7): e1000148. [51] Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2- like target genes. Plant Cell, 2003, 15(11): 2730–2741. [52] Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. The Sequential Action of miR156 and miR172 Regu-lates Developmental Timing in Arabidopsis. Cell, 2009, 138(4): 750–759. [53] Guo HS, Xie Q, Fei JF, Chua NH. MicroRNA Directs mRNA Cleavage of the Transcription Factor NAC1 to Downregulate Auxin Signals for Arabidopsis Lateral Root Development. Plant Cell, 2005, 17(5): 1376–1386. [54] Achard P, Herr A, Baulcombe DC, Harberd NP. Modula-tion of floral development by a gibberellin-regulated mi-croRNA. Development, 2004, 131(14): 3357–3365. [55] Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK. A miRNA in-volved in phosphate-starvation response in Arabidopsis. Curr Biol, 2005, 15(22): 2038–2043. [56] Jia XY, Wang WX, Ren LG, Chen QJ, Mendu V, Willcut B, Dinkins R, Tang XQ, Tang GL. Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol Biol, 2009, 71(1–2): 51–59. [57] Liu Q, Zhang YC, Wang CY, Luo YC, Huang QJ, Chen SY, Zhou H, Qu LH, Chen YQ. Expression analysis of phyto-hormone regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett, 2009, 583(4): 723–728. [58] Lauter N, Kampani A, Carlson S, Goebel M, Moose SP. microRNA172 down-regulates glossy15 to promote vege-tative phase change in maize. Proc Natl Acad Sci USA, 2005, 102(26): 9412–9417. [59] Palatnik JF, Allen E, Wu XL, Schommer C, Schwab R, Carrington JC, Weigel D. Control of leaf morphogenesis by microRNAs. Nature, 2003, 425(6955): 257–263. [60] Larue CT, We JQ, Walker JC. A microRNA–transcription factor module regulates lateral organ size and patterning in Arabidopsis. Plant J, 2009, 58(3): 450–463. [61] Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D. Specific effects of microRNAs on the plant transcriptome. Dev Cell. 2005, 8(4): 517–527. [62] Xie Z, Kasschau KD, Carrington JC. Negative feedback regulation of Dicer-Like1 in Arabidopsis by mi-croRNA-guided mRNA degradation. Curr Biol, 2003, 13(9): 784–789. [63] Liu HH, Tian X, Li YJ, Wu CA, Zheng CC. Microar-ray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 2008, 14(5): 836–843. [64] Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birn-baum KD. Cell-specific nitrogen responses mediate de-velopmental plasticity. Proc Natl Acad Sci USA, 2008, 105(2): 803–808. [65] Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernié T, Ott T, Gamas P, Cre-spi M. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by mi-croRNA169 in Medicago truncatula. Genes Dev, 2006, 20(22): 3084–3088. [66] Bari R, Pant BD, Stitt M, Scheible WR. PHO2, mi-croRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol, 2006, 141(3): 988–999. [67] Pant BD, Buhtz A, Kehr J, Scheible WR. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J, 2008, 53(5): 731–738. [68] Jones-Rhoades MW, Bartel DP. Computational identifica-tion of plant microRNAs and their targets, including a stress induced miRNA. Mol Cell, 2004, 14(6): 787–799. [69] Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL. Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell, 2006, 18(2): 412–421. [70] Chiou TJ. The role of microRNAs in sensing nutrient stress. Plant Cell Environ, 2007, 30(3): 323–332. [71] Sunkar R, Chinnusamy V, Zhu JH, Zhu JK. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci, 2007, 12(7): 301–309. [72] Yamisaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M. Regulation of copper homeostasis by microRNA in Arabidopsis. J Biol Chem, 2007, 282(22): 16369–16378. [73] Abdel-Ghany SE, Pilon M. MicroRNA-mediated systemic down-regulation of copper protein Expression in response to low copper availability in Arabidopsis. J Biol Chem, 2008, 283(23): 15932–15945. [74] Li WX, Oono Y, Zhu J, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK. The Arabidopsis NFYA5 tran-scription factor is regulated transcriptionally and post-transcriptionally to promote drought resistance. Plant Cell, 2008, 20(8): 2238–2251. [75] Wei LY, Zhang DF, Xiang F, Zhang ZX. Differentially ex-pressed miRNAs potentially involved in the regulation of defense mechanism to drought stress in maize seedlings. Int J Plant Sci, 2009, 170(8): 979–989. [76] Zhang JY, Xu YY, Huan Q, Chong K. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics, 2009, 10: 449. [77] Lu SF, Sun YH, Chiang VL. Stress-responsive microRNAs in Populus. Plant J, 2008, 55(1): 131–151. [78] Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta, 2009, 229(4): 1009–1014. [79] Ding YF, Zhu C. The role of microRNAs in copper and cadmium homeostasis. Biochem Biophys Res Commun, 2009, 386(1): 6–10. [80] Zhou ZS, Huang SQ, Yang ZM. Bioinformatic identifica-tion and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Commun, 2008, 374(3): 538–542. [81] Zhou XF, Wang GD, Zhang WX. UV-B responsive mi-croRNA genes in Arabidopsis thaliana. Mol Syst Biol, 2007, 3: 103. [82] Zhang ZX, Wei LY, Zou XL, Tao YS, Liu ZJ, Zheng YL. Submergence-responsive microRNAs are potentially in-volved in the regulation of morphological and metabolic adaptations in maize root cells. Ann Bot, 2008, 102(4): 509–519. [83] Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induc-tion of two Cu/Zn superoxide dismutase genes in Arabi-dopsis is mediated by downregulation of miR398 and im-portant for oxidative stress tolerance. Plant Cell, 2006, 18(8): 2051–2065. [84] Baker CC, Sieber P, Wellmer F, Meyerowitz EM. The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol, 2005, 15(4): 303–315. [85] Llave C, Kasschau KD, Rector MA, Carrington JC. En-dogenous and silencing-associated small RNAs in plants. Plant Cell, 2002, 14(7): 1605–1619. [86] Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonu-cleotide probes. Nucleic Acids Res, 2004, 32(22): e175. [87] Várallyay E, Burgyán J, Havelda Z. Detection of mi-croRNAs by northern blot analyses using LNA probes. Methods, 2007, 43(2): 140–145. [88] Várallyay E, Burgyán J, Havelda Z. MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Prototoc, 2008, 3(2): 190–196. [89] Pall GS, Codony-Servat C, Byrne J, Ritchie L, Hamilton A. Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Res, 2007, 35(8): e60. [90] Schmittgen TD, Lee EJ, Jiang JM, Sarkar A, Yang LQ, Elton TS, Chen CF. Real-time PCR quantification of pre-cursor and mature microRNA. Methods, 2008, 44(1): 31–38. [91] Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. Real-time quantifi-cation of microRNAs by stem-loop RT–PCR. Nucleic Acids Res, 2005, 33(20): e179. [92] Shi R, Chiang VL. Facile means for quantifying mi-croRNA expression by real-time PCR. BioTechniques. 2005, 39(4): 519–525. [93] Raymond CK, Roberts BS, Garrett-Engele P, Lim LP, Johnson JM. Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA, 2005, 11(11): 1737–1744. [94] Meister G, Landthaler M, Dorsett Y, Tuschl T. Se-quence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA, 2004, 10(3): 544–550. [95] Hutvágner G, Simard MJ, Mello CC, Zamore PD. Se-quence-specific inhibition of small RNA function. PLoS Biol, 2004, 2(4): 465–475. [96] Ørom UA, Kauppinen S, Lund AH. LNA-modified oli-gonucleotides mediate specific inhibition of microRNA function. Gene, 2006, 372(1–2): 137–141. [97] Zhang ZH, Yu JY, Li DF, Zhang ZY, Liu FX, Zhou X, Wang T, Ling Y, Su Z. PMRD: plant microRNA database. Nucleic Acids Res, 2010, 38(Database issue): D806–813. [98] Johnson C, Bowman L, Adai AT, Vance V, Sundaresan V. CSRDB: a small RNA integrated database and browser resource for cereals. Nucleic Acids Res, 2007, 35(Database issue): D829–833. [99] Gustafson AM, Allen E, Givan S, Smith D, Carrington JC, Kasschau KD. ASRP: The Arabidopsis small RNA project database. Nucleic Acids Res, 2005, 33(database issue): D637–D640. [100] Rusinov V, Baev V, Minkov IN, Tabler M. MicroIn- spector: A web toolfor detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res, 2005, 33(web server issue): W696–W700. [101] Zhang Y. miRU: An automated plant miRNA target prediction server. Nucleic Acids Res, 2005, 33(web server issue): W701–W704. [102] Kim SK, Nam JW, Rhee JK, Lee WJ, Zhang BT. Mi- Target: microRNA target-gene prediction using a sup- port vector machine. BMC Bioinform, 2006, 7: 411. [103] Zhang LF, Chia JM, Kumari S, Stein JC, Liu ZJ, Nare- chania A, Maher CA, Guill K, McMullen MD, Ware D. A genome-wide characterization of microRNA genes in maize. PLoS Genet, 2009, 5(11): e1000716. [104] Zeng CY, Wang WQ, Zheng Y, Chen X, Bo WP, Song SH, Zhang WX, Peng M. Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants. Nucleic Acids Res, 2010, 38(3): 981–995. [105] Lacombe S, Nagasaki H, Santi C, Duval D, Piégu B, Bangratz M, Breitler JC, Guiderdoni E, Brugidou C, Hirsch J, Cao XF, Brice C, Panaud O, Karlowski WM, Sato Y, Echeverria M. Identification of precursor tran-scripts for 6 novel miRNAs expands the diversity on the genomic organisation and expression of miRNA genes in rice. BMC Plant Biol, 2008, 8: 123. [106] Liu C, Zhang L, Sun J, Luo YZ, Wang MB, Fan YL, Wang L. A simple artificial microRNA vector based on ath-miR169d precursor from Arabidopsis. Mol Biol Rep, 2010, 37(2): 903–909. [107] Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol, 2003, 13(20): 1768–1774. [108] Reyes JL, Chua NH. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J, 2007, 49(4): 592–606. [109] Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resis-tance. Nat Biotech, 2006, 24(11): 1420–1428. |
[1] | 李泽琴,李锦涛,邴杰,张根发. 拟南芥APX家族基因在植物生长发育与非生物逆境胁迫响应中的作用分析[J]. 遗传, 2019, 41(6): 534-547. |
[2] | 尹玲倩,冉金山,李菁菁,任鹏,张贤娴,刘益平. 禽类就巢性状的遗传调控[J]. 遗传, 2019, 41(5): 391-403. |
[3] | 胡伟娟, 凌宏清, 傅向东. 植物表型组学研究平台建设及技术应用[J]. 遗传, 2019, 41(11): 1060-1066. |
[4] | 徐纪明,胡晗,毛文轩,毛传澡. 利用重测序技术获取转基因植物T-DNA插入位点[J]. 遗传, 2018, 40(8): 676-682. |
[5] | 陈建民. 植物遗传学中的世代及符号应用的建议[J]. 遗传, 2018, 40(6): 508-514. |
[6] | 骆甲,王型力,孙志超,吴迪,张玮,王正加. 植物环状RNA研究进展[J]. 遗传, 2018, 40(6): 467-477. |
[7] | 张太奎, 苑兆和. 植物古基因组学研究进展[J]. 遗传, 2018, 40(1): 44-56. |
[8] | 高飞雁, 李玲, 王教瑜, 王艳丽, 孙国昌. PEX基因在过氧化物酶体形成及真菌致病性中的作用[J]. 遗传, 2017, 39(10): 908-917. |
[9] | 王钦美, 崔建国, 于长志, 张智, 吴月亮, 张丽杰, 林梅. 案例教学在林学专业遗传学教学中的应用[J]. 遗传, 2017, 39(10): 939-946. |
[10] | 王云生. 基于高通量测序的植物群体基因组学研究进展[J]. 遗传, 2016, 38(8): 688-699. |
[11] | 刘永明, 张玲, 邱涛, 赵卓凡, 曹墨菊. 高通量转录组测序技术在植物雄性不育研究中的应用[J]. 遗传, 2016, 38(8): 677-687. |
[12] | 徐妙云, 朱佳旭, 张敏, 王磊. 植物miR169/NF-YA调控模块研究进展[J]. 遗传, 2016, 38(8): 700-706. |
[13] | 曾笑威, 刘翠翠, 韩凝, 边红武, 朱睦元. 植物自噬的调控因子和受体蛋白研究进展[J]. 遗传, 2016, 38(7): 644-650. |
[14] | 许佳, 侯宁, 韩凝, 边红武, 朱睦元. 小分子RNA在植物激素信号通路中的调控功能[J]. 遗传, 2016, 38(5): 418-426. |
[15] | 马兴亮,刘耀光. 植物CRISPR/Cas9基因组编辑系统与突变分析[J]. 遗传, 2016, 38(2): 118-125. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: