遗传 ›› 2009, Vol. 31 ›› Issue (12): 1192-1204.doi: 10.3724/SP.J.1005.2009.01192
林海建, 张志明, 沈亚欧, 高世斌, 潘光堂
收稿日期:
2009-04-12
修回日期:
2009-05-17
出版日期:
2009-12-10
发布日期:
2009-12-10
通讯作者:
潘光堂
E-mail:pangt1956@yahoo.com.cn
基金资助:
国家高技术研究发展计划项目(863计划)(编号:2007AA10Z172), 国家自然科学基金项目(编号:30700506)和国家科技支撑计划项目 (编号:2006BAD01A03)资助
LIN Hai-Jian, ZHANG Zhi-Ming, SHEN Ya-Ou, GAO Shi-Bin, PAN Guang-Tang
Received:
2009-04-12
Revised:
2009-05-17
Online:
2009-12-10
Published:
2009-12-10
Contact:
PAN Guang-Tang
E-mail:pangt1956@yahoo.com.cn
摘要:
逆境胁迫影响植物的正常生长, 导致作物减产, 甚至绝收。提高作物的抗逆性一直是作物遗传育种学家追求的目标, 大量研究也正试图揭示这一复杂的生物学机制。传统的从生理生化水平到单一基因的研究都难以揭示植物复杂的抗逆机制, 而基因芯片(Gene chip)的应用使得这一目标成为了可能, 基因芯片从整个转录水平入手, 能够揭示大量基因的表达和调控情况, 同时结合蛋白质组学和代谢组学的研究方法, 将基因定位于代谢途径的某个位置, 寻找逆境胁迫响应的关键基因, 完善植物逆境胁迫响应的分子网络, 为今后利用生物技术手段提高作物抗逆境胁迫能力提供依据。文章主要对近年来基因芯片在植物逆境胁迫基因表达研究中的进展进行了综述。
林海建,张志明,沈亚欧,高世斌,潘光堂. 基因芯片研究植物逆境基因表达新进展[J]. 遗传, 2009, 31(12): 1192-1204.
LIN Hai-Jian, ZHANG Zhi-Meng, CHEN E-Ou, GAO Shi-Bin, BO Guang-Tang. Advances of microarray analysis on plant gene expression under en-vironmental stresses[J]. HEREDITAS, 2009, 31(12): 1192-1204.
[1] Vance CP. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renew-able resources. Plant Physiol, 2001, 127(2): 390–397. [2] Madhava Rao KV, Raghavendra AS, Janardhan Reddy K. Physiology and Molecular Biology of Stress Tolerance in Plants. Hardcover. (Eds.). XV. Springer, 2006. [3] Yokoi S, Bressan RA, Hasegawa PM. Salt Stress Tolerance of Plants. JIRCAS Working Report, 2002, 25–33. [4] Raghothama KG. Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol, 1999, 550: 665–693. [5] Beck EH, Fettig S, Knake CA, Hartig K, Bhattarai T. Spe-cific and unspecific responses of plants to cold and drought stress. J Biosci, 2007, 32(3): 501–510. [6] Mengel K, Kirkby EA. Principles of Plant Nutrition. Bern, Switzerland:International Potash Institute. 2nd edition. 1979. [7] Fernandes MS, Pereyra Rossiello RO. Mineral nitrogen in plant physiology and plant nutrition. Critical Rev Plant Sci, 1995, 14(2): 111–148. [8] Mori S. Iron acquisition by plants. Curr Opin Plant Biol, 1999, 2(3): 250–253. [9] Zhang H, Forde BG. Regulation of Arabidopsis root de-velopment by nitrate availability. J Exp Bot, 2000, 51(342): 51–59. [10] Raghothama KG, Karthikeyan AS. Phosphate acquisition. Plant Soil, 2005, 274(1–2): 37–49. [11] Rosolem CA, Rossetto CAV, Fernandes DM, Ishimura I. Potassium fertilization, root morphology and potassium absorption by soybean. J Plant Nutr, 1993, 16(3): 479–492. [12] Jiang CF, Gao XH, Liao LL, Harberd NP, Fu XD. Phos-phate starvation root architecture and anthocyanin accu-mulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiol, 2007, 145(4): 1460–1470. [13] Crawford NM, Glass ADM. Molecular physiological as-pects of nitrate uptake in plants. Trends Plant Sci, 1998, 3(10): 389–395. [14] Thomine S, Lelièvre F, Debarbieux E, Schroeder JI, Hélène BB. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J, 2003, 34(5): 685–695. [15] Yi KK, Wu ZC, Zhou J, Du LM, Guo LB, Wu YR, Wu P. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol, 2005, 138(4): 2087–2096. [16] Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol, 2006, 140(3): 909–921. [17] Wang R, Guegler K, LaBrie ST, Crawford NM. Genomic analysis of a nutrient response in Arabidopsis reveals di-verse expression patterns and novel metabolic and poten-tial regulatory genes induced by nitrate. Plant Cell, 2000, 12(8): 1491–1509. [18] Wang RC, Okamoto M, Xing XJ, Crawford NM. Mi-croarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1 000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol, 2003, 132(2): 556–567. [19] Williams LE, Miller AJ. Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 659–688. [20] Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastruc-ture of Arabidopsis in response to nitrogen. Plant Physiol, 2004, 136(1): 2483–2499. [21] Lian XM, Wang SP, Zhang JW, Feng Q, Zhang LD, Fan DL, Li XH, Yuan DJ, Han B, Zhang QF. Expression pro-files of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Mol Biol, 2006, 60(5): 617–631. [22] Bi YM, Wang RL, Zhu T, Rothstein SJ. Global transcrip-tion profiling reveals differential responses to chronic ni-trogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genomics, 2007, 8: 281. [23] Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Rahn C, Swarup R, Woolaway KE, White PJ. Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol, 2003, 132(2): 578–596. [24] Muller R, Morant M, Jarmer H, Nilsson L, Nielsen TH. Genome-wide analysis of the Arabidopsis leaf transcrip-tome reveals interaction of phosphate and sugar metabo-lism. Plant Physiol, 2007, 143(1): 156–171. [25] Wasaki J, YonetaniR, Kuroda S, Shinano T, Yazaki J, Fu-jii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Ki-shimoto N, Kikuchi S, Yamagishi M, Osaki M. Tran-scriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ, 2003, 26(9): 1515–1523. [26] Calderon-Vazquez C, Ibarra-Laclette E, Caballero-Perez J, Herrera-Estrella L. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels. J Exp Bot, 2008, 59(9): 2479–2497. [27] Hernandez G, Ram?´rez M, Valdés-Lépez O, Tesfaye M, Graham MA, Czechowski T, Schlereth A, Wandrey M, Erban A, Cheung F, Wu HC, Lara M, Town CD, Kopka J, Udvardi MK, Vance CP. Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol, 2007, 144(2): 752–767. [28] Wu Pi, Ma LG, Hou XL, Wang MY, Wu YR, Liu FY, Deng XW. Phosphate starvation triggers distinct altera-tions of genome expression in Arabidopsis roots and leaves. Plant Physiol, 2003, 132(3): 1260–1271. [29] Wasaki J, Yonetani R, Shinano T, Kai M, Osaki M. Ex-pression of the OsPI1 gene, cloned from rice roots using cDNA microarray, rapidly responds to phosphorus status. New Phytol, 2003, 158: 239–248. [30] Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud MC. A genome-wide transcriptional analysis us-ing Arabidopsis thaliana Affymetrix gene chips deter-mined plant responses to phosphate deprivation. Proc Natl Acad Sci USA, 2005, 102(33): 11934–11939. [31] Moseley JL, Chang CW, Grossman AR. Genome-based approaches to understanding phosphorus deprivation re-sponses and PSR1 control in Chlamydomonas reinhardtii. Eukaryotic Cell, 2006, 5(1): 26–44. [32] Armengaud P, Breitling R, Amtmann A. The potassium dependent transcriptome of Arabidopsis reveals a promi-nent role of jasmonic acid in nutrient signaling. Plant Physiol, 2004, 136(1): 2556–2576. [ 33] Nikiforova V, Freitag J, Kempa S, Adamik M, Hesse H, Hoefgen R. Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J, 2003, 33(4): 633–650. [34] Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yamaya T, Takahashi H. Transcriptome profiling of sul-fur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol, 2003, 132(2): 597–605. [35] Hirai MY, Fujiwara T, Awazuhara M, Kimura T, Noji M, Saito K. Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expres-sion in response to sulfur nutrition. Plant J, 2003, 33(4): 651–663. [36] Hoefgena R, Nikiforova VJ. Metabolomics integrated with transcriptomics: assessing systems response to sulfur- defi-ciency stress. Physiol Plant, 2008, 132(2): 190–198. [37] Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2004, 101(27): 10205–10210. [38] Negishi T, Nakanishi H, Yazaki J, Kishimoto N, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kikuchi S, Mori S, Nishizawa Naoko K. cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J, 2002, 30(1): 83–94. [39] Takagi S. Naturally occurring iron-chelating compounds in oat- and rice-root washings. Soil Sci Plant Nutr, 1976, 22: 423–433. [40] O'Rourke JA, Charlson DV, Gonzalez DO, Vodkin LO, Graham MA, Cianzio SR, Grusak MA, Shoemaker RC. Microarray analysis of iron deficiency chlorosis in near-isogenic soybean line. BMC Genomics, 2007, 8: 476. [41] Becher M, Talke IN, Krall L, Kramer U. Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J, 2004, 37(2): 251–268. [42] Weber M, Harada E, Vess C, Roephenack-Lahaye E, Clemens S. Comparative microsrray analysis of Arabi-dopsis thaliana and Arabidopsis halleri roots identifiers nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J, 2004, 37(2): 269–281. [43] Van de Mortel JE, Almar VL, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, van Themaat EVL, Koornneef M, Aarts MGM. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol, 2006, 142(3): 1127–1147. [44] Chandran D, Sharopova N, Ivashuta S, Gantt JS, Vanden-bosch KA, Samac DA. Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula. Planta, 2008, 228(1): 151–166. [45] Abercrombie JM, Halfhill MD, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CN Jr. Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol, 2008, 8: 87. [46] Guo PG, Bai GH, Carver B, Li RH, Bernardo A, Baum M. Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress. Mol Genet Genomics, 2007, 277(1): 1–12. [47] Houde M, Diallo AO. Identification of genes and path-ways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines. BMC Genomics, 2008, 9: 400. [48] Puthoff DP, Nettleton D, Rodermel SR, Baum TJ. Arabi-dopsis gene expression changes during cyst nematode parasitism revealed by statistical analyses of microarray expression profiles. Plant J, 2003, 33(5): 911–921. [49] Vos M, van Oosten VR, van Poecke RMP, van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Métraux JP, van Loon C, Dicke M, Pieterse CMJ. Signal signature and tran-scriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact, 2005, 18(9): 923–937. [50] Fabro G, Di Rienzo JA, Voigt CA, Savchenko T, Dehesh K, Somerville S, Alvarez ME. Genome-wide expression profiling Arabidopsis at the stage of golovinomyces cichoracearum haustorium formation. Plant Physiol, 2008, 146(3): 1421–1439. [51] Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA, 2000, 97(21): 11655–11660. [52] Rinaldi C, Kohler A, Frey P, Duchaussoy F, Ningre N, Couloux A, Wincker P, Thiec DL, Fluch S, Martin F, Du-plessis S. Transcript profiling of poplar leaves upon infec-tion with compatible and incompatible strains of the foliar rust Melampsora larici-populina. Plant Physiol, 2007, 144(1): 347–366. [53] Ascencio-Ibáñez JT, Sozzani R, Lee TJ, Chu TM, Wolf-inger RD, Cella R, Hanley-Bowdoin L. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle dur-ing geminivirus infection. Plant Physiol, 2008, 148(1): 436–454. [54] Thompson GA, Goggin FL. Goggin. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J Exp Bot, 2006, 57(4): 755–766. [55] Kempema LA, Cui X, Holzer FM, Walling LL. Arabidopsis transcriptome changes in response to phloem-feeding silver-leaf whitefly nymphs. Similarities and distinctions in re-sponses to aphids. Plant Physiol, 2007, 143(2): 849–865. [56] Jiang YQ, Deyholos MK. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol, 2006, 6: 25. [57] Zhou JL, Wang XF, Jiao YL, Qin YH, Liu XG, He K, Chen C, Ma LG, Wang J, Xiong LZ, Zhang QF, Fan LM, Deng XW. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol, 2007, 63(5): 591–608. [58] Kawasaki SJ, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell, 2001, 13(4): 889–905. [59] Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K. Com-parative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt Cress using Arabidopsis microarray. Plant Physiol, 2004, 135(3): 1697–1709. [60] Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng LH, Wanamaker SI, Mandal J, Xu J, Cui XP, Close TJ. Comparative transcriptional profiling of two contrast-ing rice genotypes under salinity stress during the vegeta-tive growth stage. Plant Physiol, 2005, 139(2): 822–835. [61] Ueda A, Kathiresan A, Bennett J, Takabe T. Comparative transcriptome analyses of barley and rice under salt stress. Theor Appl Genet, 2006, 112(7): 1286–1294. [62] Ozturk ZN, TalamelV, Deyholos M, Michalowski1 CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ. Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol, 2002, 48(5–6): 551–573. [63] Oono Y, Seki1 M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Iida K, Ma-ruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K. Monitoring expression profiles of Arabidopsis gene ex-pression during rehydration process after dehydration us-ing ca. 7000 full-length cDNA microarray. Plant J, 2003, 34(6): 868–887. [64] Roche J, Hewezi T, Bouniols A, Gentzbittel L. Transcrip-tional profiles of primary metabolism and signal transduc-tion-related genes in response to water stress in field-grown sunflower genotypes using a thematic cDNA microarray. Planta, 2007, 226(3): 601–617. [65] Seki M, Narusaka M, Abe H, Kasuga M, Yamagu-chi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 2001, 13(1): 61–72. [66] Thomashow MF. Plant cold acclimation, freezing toler-ance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571–599. [67] Fowler S, Thomashow MF. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002, 14(8): 1675–1690. [68] Yamaguchi T, Nakayama K, Hayashi T, Yazaki J, Kishi-moto N, Kikuchi S, Koike S. cDNA microarray analysis of rice anther genes under chilling stress at the microsporo-genesis stage revealed two genes with DNA transponson castaway in 5’-flanking region. Biosci Biotechnol, Bio-chem, 2004, 68(6): 1315–1323. [69] Dhanaraj AL, Alkharouf NW, Beard HS, Chouikha IB, Matthews BF, Wei H, Arora R, Rowland LJ. Major dif-ferences observed in transcript profiles of blueberry dur-ing cold acclimation under field and cold room conditions. Planta, 2007, 225(3): 735–751. [70] Kaplan F, Kopka J, Sung DY, Zhao Wei, Popp M, Porat Ron, Guy CL. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate rela-tionship of cold-regulated gene expression with modifica-tions in metabolite content. Plant J, 2007, 50(6): 967–981. [71] Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell, 2003, 15(11): 2730–2741. [72] Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol, 2005, 15(22): 2038–2043. [73] Qu J, Ye Jian, Fang RX. Artificial microRNA-mediated virus resistance in plants. J Virol, 2007, 81(12): 6690–6699. [74] Zhou XF, Wang GD, Zhang WX. UV-B responsive mi-croRNA genes in Arabidopsis thaliana. Mol Syst Biol, 2007, 3(103): 1–10. [75] Liu HH, Tian X, Li YJ, Wu CA, Zheng CC. Microar-ray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 2008, 14(5): 836–843. [76] Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K, Monitoring the expression pattern of around 7,000 Arabidopsis genes un-der ABA treatments using a full-length cDNA microarray. Funct Integr Genomics, 2002, 2(6): 282–291. [77] Gonzali S, Loreti E, Novi G, Poggi A, Alpi A, Perata P. The use of microarrays to study the anaerobic response in Arabidopsis. Ann Bot, 2005, 96(4): 661–688 [78] Batista R, Saibo N, Lourenc T, Oliveira MM. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Natl Acad Sci USA, 2008, 105(9): 3640–3645. |
[1] | 宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳. 基于Hi-C技术哺乳动物三维基因组研究进展[J]. 遗传, 2019, 41(3): 215-233. |
[2] | 陈应坚,廖苑君,林帆,孙胜南,赵小蕾,覃继恒,饶绍奇. 基于转录组数据的网络分析挖掘鼻咽癌与口腔鳞癌的共享功能模块[J]. 遗传, 2019, 41(2): 146-157. |
[3] | 李佳,刘运华,张余,陈晨,余霞,余舜武. 干旱对水稻生物钟基因和干旱胁迫响应基因每日节律性变化的影响[J]. 遗传, 2017, 39(9): 837-846. |
[4] | 王星,张纪龙,冯秀秀,李洪杰,张根发. 植物质膜水通道蛋白转运及逆境胁迫响应的分子调控机制[J]. 遗传, 2017, 39(4): 293-301. |
[5] | 施剑,李艳明,方向东. 长链非编码RNA通过细胞核高级结构调控真核基因表达及其临床意义[J]. 遗传, 2017, 39(3): 189-199. |
[6] | 路畅, 黄银花. 动物长链非编码RNA研究进展[J]. 遗传, 2017, 39(11): 1054-1065. |
[7] | 翟亚男, 许泉, 郭亚, 吴强. 原钙粘蛋白基因簇调控区域中成簇的CTCF结合位点分析[J]. 遗传, 2016, 38(4): 323-336. |
[8] | 储黄伟, 牛付安, 程灿, 周继华, 王新其, 罗小金, 袁勤, 曹黎明. 杂交粳稻花优14及其亲本孕穗期剑叶的基因表达谱芯片分析[J]. 遗传, 2015, 37(9): 932-938. |
[9] | 周菲, 路史展, 高亮, 张娟娟, 林拥军. 植物质体基因工程:新的优化策略及应用[J]. 遗传, 2015, 37(8): 777-792. |
[10] | 黄小庆,李丹丹,吴娟. 植物长链非编码RNA研究进展[J]. 遗传, 2015, 37(4): 344-359. |
[11] | 刘欣, 张洁, 赵春晖, 李铁松, 王继红, 李庆伟. 日本七鳃鳗物种特异性microRNAs及其前体识别与验证[J]. 遗传, 2015, 37(3): 283-291. |
[12] | 宋晓燕, 张德祥, 张文武, 季从亮, 张细权, 罗庆斌. 鸡3种组织中热应激相关基因的表达谱芯片分析[J]. 遗传, 2014, 36(8): 800-808. |
[13] | 施子晗, 李泽琴, 张根发. 植物组蛋白赖氨酸化修饰参与基因表达调控的机理[J]. 遗传, 2014, 36(3): 208-219. |
[14] | 张韬 杨足君. 植物基因组DNase I超敏感位点的研究进展[J]. 遗传, 2013, 35(7): 867-874. |
[15] | 解敏敏,龚达平,李凤霞,刘贯山,孙玉合. 烟草细胞色素P450的基因组学分析[J]. 遗传, 2013, 35(3): 379-387. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: