遗传 ›› 2025, Vol. 47 ›› Issue (2): 237-257.doi: 10.16288/j.yczz.24-273
收稿日期:
2024-09-19
修回日期:
2024-11-05
出版日期:
2025-02-20
发布日期:
2024-11-27
通讯作者:
施鹏,博士,研究员,研究方向:动物适应性进化的遗传机制。E-mail: ship@mail.kiz.ac.cn作者简介:
刘奇,博士,特别研究助理,研究方向:回声定位行为和遗传机制。E-mail: liuqi@mail.kiz.ac.cn
基金资助:
Received:
2024-09-19
Revised:
2024-11-05
Published:
2025-02-20
Online:
2024-11-27
Supported by:
摘要:
回声定位是一个由多个系统协作的、高度特化的复杂生物性状,它的起源最早可以追溯到6,800万年前,并在随后的生物演化历程中反复出现在多个脊椎动物类群中,表现出强劲的生命力并成为自然界中性状趋同演化的典型案例。然而,直到20世纪初人类才真正揭开动物回声定位研究的序幕,成为动物学、行为学、遗传学等领域的研究热点,并在过去的80多年间取得了丰硕的成果。本文回顾了动物回声定位研究的发展历史,概述了不同回声定位动物类群,重点阐述了回声定位在发声机制、声学特征和高频听力机制方面的研究进展,以期为全面了解动物回声定位提供参考。
刘奇, 施鹏. 脊椎动物回声定位发声和听觉机制研究进展[J]. 遗传, 2025, 47(2): 237-257.
Qi Liu, Peng Shi. Advances in vocalizating and hearing mechanisms of echolocation in vertebrate[J]. Hereditas(Beijing), 2025, 47(2): 237-257.
表1
脊椎动物回声定位发现历史总结"
动物类群 | 最早发现时间 | 发现者 | 检测装置 | 实验设计中关键技术 | 参考文献 |
---|---|---|---|---|---|
蝙蝠 | 1941 | Griffin和Galambos | 线绳规避装置 | “盲”、“聋(堵耳朵)”、“哑”的蝙蝠 | [ |
油鸱 | 1953 | Griffin | 直接观察洞穴中飞行的油鸱 | 堵耳朵+发声行为与飞行关联分析 | [ |
金丝燕 | 1959 | Novick和Medway | 直接观察黑暗环境飞行的金丝燕 | 发声行为与飞行关联分析 | [ |
齿鲸 | 1961 | Norris等 | 线绳规避装置 | 蒙眼、阻断超声波发射 | [ |
鼩鼱 | 1964 | Gloud、Novick和Negus | 圆盘-平台 | 堵耳朵 | [ |
马岛猬 | 1968 | Gloud | 圆盘-平台 | 堵耳朵 | [ |
猪尾鼠 | 2021 | He等 | 旷场、隧道、圆盘-平台 | 堵耳朵 | [ |
表2
动物回声定位声波特征"
动物类群 | 信号类型 | 频率范围(kHz) | 发声器官 | 脉冲时程(ms) | 生物学功能 | 参考文献 |
---|---|---|---|---|---|---|
喉部回声定位蝙蝠 | CF-FM/FM | 12~209.38 | 喉 | 1.7~81.84 | 导航、觅食、通讯 | [ |
果蝠属 | Click | 12~74.15 | 舌 | 0.41~1.1 | 导航 | [ |
鼩鼱 | Click | 2.74~60 | 喉 | 1.45~13.3 | 导航、评估环境空间结构 | [ |
马岛猬 | Click | 5~17 | 舌 | 0.4~0.9 | 导航 | [ |
齿鲸 | Click | 15~142 | 声唇 | 0.013~0.6 | 导航、觅食、通讯 | [ |
猪尾鼠 | FM | 74~119.4 | 喉 | 1.72~2.42 | 导航 | [ |
油鸱 | Click | 6.1~10 | 鸣管 | 1 | 导航、通讯 | [ |
金丝燕 | Click | 1~10 | 鸣管 | 1~8 | 导航、通讯 | [ |
[1] | Pierce GW, Griffin DR. Experimental determination of supersonic notes emitted by bats. J Mammal, 1938, 19(4): 454-465. |
[2] | Griffin DR, Galambos R. The sensory basis of obstacle avoidance by flying bats. J Exp Zool, 1941, 86(3): 481-506. |
[3] | Galambos R, Griffin DR. Obstacle avoidance by flying bats: the cries of bats. J Exp Zool, 1942, 89(3): 475-490. |
[4] |
Griffin DR. Echolocation by blind men, bats and radar. Science, 1944, 100(2609): 589-590.
pmid: 17776129 |
[5] | Kunz TH, Fenton BM. Bat Ecology. Chicago: University of Chicago Press, 2003. |
[6] |
Jones G. Echolocation. Curr Biol, 2005, 15(13): R484-R488.
doi: 10.1016/j.cub.2005.06.051 pmid: 16005275 |
[7] | Simmons JA, Stein RA. Acoustic imaging in bat sonar: echolocation signals and the evolution of echolocation. J Comp Physiol, 1980, 135(1): 61-84. |
[8] |
Teeling EC, Vernes SC, Dávalos LM, Ray DA, Gilbert MTP, Myers E, B1K Consortium. Bat biology, genomes, and the bat1K project: to generate chromosome-level genomes for all living bat species. Annual Review of Animal Biosciences, 2018, 6: 23-46.
doi: 10.1146/annurev-animal-022516-022811 pmid: 29166127 |
[9] | Schmidt S. Evidence for a spectral basis of texture perception in bat sonar. Nature, 1988, 331(6157): 617-619. |
[10] | Falk B, Williams T, Aytekin M, Moss CF. Adaptive behavior for texture discrimination by the free-flying big brown bat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2011, 197(5): 491-503. |
[11] |
Simmons JA, Lavender WA, Lavender BA, Doroshow CA, Kiefer SW, Livingston R, Scallet AC, Crowley DE. Target structure and echo spectral discrimination by echolocating bats. Science, 1974, 186(4169): 1130-1132.
pmid: 4469702 |
[12] | Ruczynski I, Kalko EKV, Siemers BM. The sensory basis of roost finding in a forest bat, Nyctalus noctula. J Exp Biol, 2007, 210(20): 3607-3615. |
[13] | Jones G. Sensory ecology: echolocation calls are used for communication. Curr Biol, 2008, 18(1): R34-R35. |
[14] | Knörnschild M, Jung K, Nagy M, Metz M, Kalko E. Bat echolocation calls facilitate social communication. Proc Biol Sci, 2012, 279(1748): 4827-4835. |
[15] | Rose MC, Styr B, Schmid TA, Elie JE, Yartsev MM. Cortical representation of group social communication in bats. Science, 2021, 374(6566): eaba9584. |
[16] | Fenton MB, Grinnell AD, Popper AN, Fay RR. Bat Bioacoustics. New York: Springer, 2016, 1-24. |
[17] | Dijkgraaf S. Spallanzani's unpublished experiments on the sensory basis of object perception in bats. Isis, 1960, 51(1): 9-20. |
[18] | Grinnell AD. Early milestones in the understanding of echolocation in bats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2018, 204(6): 519-536. |
[19] | Hahn WL. Some habits and sensory adaptations of cave-inhabiting bats. II. Biol Bull, 1908, 15(4): 165-193. |
[20] | Hartridge H. The avoidance of objects by bats in their flight. J Physiol, 1920, 54(1-2): 54-57. |
[21] | Dijkgraaf S. Die sinneswelt der fledermäuse. Experientia, 1946, 2(11): 438-448. |
[22] | Griffin DR. Donald R. Griffin. In: Squire LR, eds. The History of Neuroscience in Autobiography. Volume 2. San Diego: Academic Press, 1999, 68-93. |
[23] | Griffin DR, Webster FA, Michael CR. The echolocation of flying insects by bats. Anim Behav, 1960, 8(3): 141-154. |
[24] | Gatesy J, Geisler JH, Chang J, Buell C, Berta A, Meredith RW, Springer MS, McGowen MR. A phylogenetic blueprint for a modern whale. Mol Phylogenet Evol, 2013, 66(2): 479-506. |
[25] |
Brinkløv S, Fenton MB, Ratcliffe JM. Echolocation in Oilbirds and swiftlets. Front Physiol, 2013, 4: 123.
doi: 10.3389/fphys.2013.00123 pmid: 23755019 |
[26] |
Tsagkogeorga G, Parker J, Stupka E, Cotton JA, Rossiter SJ. Phylogenomic analyses elucidate the evolutionary relationships of bats. Curr Biol, 2013, 23(22): 2262-2267.
doi: S0960-9822(13)01130-5 pmid: 24184098 |
[27] | Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT, Suh A, Weber CC, da Fonseca RR, Li JW, Zhang F, Li H, Zhou L, Narula N, Liu L, Ganapathy G, Boussau B, Bayzid MS, Zavidovych V, Subramanian S, Gabaldón T, Capella-Gutiérrez S, Huerta-Cepas J, Rekepalli B, Munch K, Schierup M, Lindow B, Warren WC, Ray D, Green RE, Bruford MW, Zhan XJ, Dixon A, Li SB, Li N, Huang YH, Derryberry EP, Bertelsen MF, Sheldon FH, Brumfield RT, Mello CV, Lovell PV, Wirthlin M, Schneider MPC, Prosdocimi F, Samaniego JA, Velazquez AMV, Alfaro-Núñez A, Campos PF, Petersen B, Sicheritz-Ponten T, Pas A, Bailey T, Scofield P, Bunce M, Lambert DM, Zhou Q, Perelman P, Driskell AC, Shapiro B, Xiong ZJ, Zeng YL, Liu SP, Li ZY, Liu BH, Wu K, Xiao J, Yinqi X, Zheng QM, Zhang Y, Yang HM, Wang J, Smeds L, Rheindt FE, Braun M, Fjeldsa J, Orlando L, Barker FK, Jønsson KA, Johnson W, Koepfli K-P, O’Brien S, Haussler D, Ryder OA, Rahbek C, Willerslev E, Graves GR, Glenn TC, McCormack J, Burt D, Ellegren H, Alström P, Edwards SV, Stamatakis A, Mindell DP, Cracraft J, Braun EL, Warnow T, Jun W, Gilbert MTP, Zhang GJ. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 2014, 346(6215): 1320-1331. |
[28] | Thomas JA, Jalili M. Review of echolocation in insectivores and rodents. In: Thomas JA, Moss CF, Vater M, eds. Echolocation in Bats and Dolphins. Chicago: University of Chicago Press, 2004, 547-564. |
[29] | Gould E. Evidence for echolocation in the tenrecidae of madagascar. Proc Am Philos Soc, 1965, 109(6): 352-360. |
[30] | He K, Liu Q, Xu DM, Qi FY, Bai J, He SW, Chen P, Zhou X, Cai WZ, Chen ZZ, Liu Z, Jiang XL, Shi P. Echolocation in soft-furred tree mice. Science, 2021, 372(6548): eaay1513. |
[31] |
Panyutina AA, Kuznetsov AN, Volodin IA, Abramov AV, Soldatova IB. A blind climber: The first evidence of ultrasonic echolocation in arboreal mammals. Integr Zool, 2017, 12(2): 172-184.
doi: 10.1111/1749-4877.12249 pmid: 27991725 |
[32] | Möhres FP. Über dieultraschallorientierung der hufeisennasen (Chiroptera-Rhinolophinae). Z Vergl Physiol, 1953, 34(6): 547-588. |
[33] | Möhres FP, Kulzer E. Über die orientierung der flughunde (Chiroptera-Pteropodidae). Z Vergl Physiol, 1956, 38(1): 1-29. |
[34] | Kulzer E. Flughunde erzeugen orientierungslaute durch zungenschlag. Naturwissenschaften, 1956, 43(5): 117-118. |
[35] | Kulzer E. Untersuchungen über die biologie von flughunden der gattung Rousettus Gray. Z Morph u Ökol Tiere, 1958, 47(4): 374-402. |
[36] |
Novick A. Orientation in paleotropical bats. I. Microchiroptera. J Exp Zool, 1958, 138(1): 81-153.
pmid: 13631160 |
[37] | Herbert VH. Echoortungsverhalten des flughundes Rousettus aegyptiacus (Megachiroptera). Zeitschrift für Säugetierkunde, 1985(50): 141-152. |
[38] | Crowcroft P. Notes on the behaviour of shrews. Behaviour, 1955, 8(1): 63-80. |
[39] | Siemers BM, Schauermann G, Turni H, von Merten S. Why do shrews twitter? Communication or simple echo-based orientation. Biol Lett, 2009, 5(5): 593-596. |
[40] | Gould E, Novick A, Negus NC. Evidence for echolocation in shrews. J Exp Zool, 1964, 156(1): 19-37. |
[41] | Buchler ER. The use of echolocation by the wandering shrew (Sorex vagrans). Anim Behav, 1976, 24(4): 858-873. |
[42] | Tomasi TE. Echolocation by the short-tailed shrew Blarina brevicauda. J Mammal, 1979, 60(4): 751-759. |
[43] | Forsman KA, Malmquist MG. Evidence for echolocation in the common shrew, Sorex araneus. J Zool, 1988, 216(4): 655-662. |
[44] | Buchler ER, Mitz AR. Similarities in design features of orientation sounds used by simpler, nonaquatic echolocators. In: Busnel RG, Fish JF, eds. Animal Sonar Systems. New York: Springer, 1980, 871-874. |
[45] | Grünwald A. Untersuchungen zur orientierung der weißzahnspitzmäuse (Soricidae crocidurinae). Z Vergl Physiol, 1969, 65: 191-217. |
[46] |
Catania KC, Hare JF, Campbell KL. Water shrews detect movement, shape, and smell to find prey underwater. Proc Natl Acad Sci USA, 2008, 105(2): 571-576.
doi: 10.1073/pnas.0709534104 pmid: 18184804 |
[47] | Catania KC. The neurobiology and behavior of the American water shrew (Sorex palustris). J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2013, 199(6): 545-554. |
[48] | Elemans CPH, Jiang WL, Jensen MH, Pichler H, Mussman BR, Nattestad J, Wahlberg M, Zheng XD, Xue Q, Fitch WT. Evolutionary novelties underlie sound production in baleen whales. Nature, 2024, 627(8002): 123-129. |
[49] | Wood JFG. Underwater sound production and concurrent behavior of captive porpoises, Tursiops truncatus and Stenella plagiodon. Bull Mar Sci, 1953, 3(2): 120-133. |
[50] |
Kellogg WN, Kohler R. Reactions of the porpoise to ultrasonic frequencies. Science, 1952, 116(3010): 250-252.
pmid: 17742549 |
[51] | Kellogg WN. Ultrasonic hearing in the porpoise, Tursiops truncatus. J Comp Physiol Psychol, 1953, 46(6): 446-450. |
[52] | Schevill WE, Lawrence B. Auditory response of a bottlenosed porpoise, Tursiops truncatus, to frequencies above 100 kc. J Exp Zool, 1953, 124(1): 147-165. |
[53] | Schevill WE, Lawrence B. Food-finding by a captive porpoise (Tursiops truncatus). Breviora, 1956, 53: 1-15. |
[54] | Kellogg WN. Echo ranging in the porpoise: perception of objects by reflected sound is demonstrated for the first time in marine animals. Science, 1958, 128(3330): 982-988. |
[55] | Norris KS, Prescott JH, Asa-Dorian PV, Perkins P. An experimental demonstration of echolocation behavior in the porpoise, Tursiops truncatus (Montagu). Biol Bull, 1961, 120(2): 163-176. |
[56] |
Griffin DR. Acoustic orientation in the oil bird, Steatornis. Proc Natl Acad Sci USA, 1953, 39(8): 884-893.
pmid: 16589349 |
[57] | Novick A. Acoustic orientation in the cave swiftlet. Biol Bull, 1959, 117(3): 497-503. |
[58] | Medway L. Echo-Location among Collocalia. Nature, 1959, 184(4696): 1352-1353. |
[59] | Wang B, Ma JZ, Chen Y, Tan LJ, Liu Q, Shen QQ, Liao QY, Zhang LB. Echolocation calls of free-flying Himalayan swiftlets (Aerodramus brevirostris). Zool Res, 2013, 34(01): 8-13. |
王斌, 马建章, 陈毅, 谭梁静, 刘奇, 沈琪琦, 廖庆义, 张礼标. 短嘴金丝燕回声定位叫声特征. 动物学研究, 2013, 34 (01): 8-13. | |
[60] | Coles RB, Konishi M, Pettigrew JD. Hearing and echolocation in the Australian grey swiftlet, collocalia spodiopygia. J Exp Biol, 1987, 129(1): 365-371. |
[61] | Fenton MB. Acuity of echolocation in collocalia hirundinacea (Aves: Apodidae), with comments on the distributions of echolocating swiftlets and molossid bats. Biotropica, 1975, 7(1): 1-7. |
[62] | Fullard JH, Barclay RMR, Thomas DW. Echolocation in free-flying atiu swiftlets (Aerodramus sawtelli). Biotropica, 1993, 25(3): 334-339. |
[63] |
Griffin DR, Suthers RA. Sensitivity of echolocation in cave swiftlets. Biol Bull, 1970, 139(3): 495-501.
pmid: 5494235 |
[64] | Harrisson T. Onset of echo-location clicking in collocalia swiftlets. Nature, 1966, 212(5061): 530-531. |
[65] | Medway L, Pye JD. Echolocation and the systematics of swiftlets. In: Stonehouse B, Perrins C, eds. Evolutionary Ecology. London: Macmillan Education, 1977, 225-238. |
[66] | Smyth DM, Roberts JR. The sensitivity of echolocation by the grey swiftlet Aerodramus Spodiopygius. Ibis, 1983, 125(3): 339-345. |
[67] | Price JJ, Johnson KP, Bush SE, Clayton DH. Phylogenetic relationships of the Papuan swiftlet Aerodramus papuensis and implications for the evolution of avian echolocation. Ibis, 2005, 147(4): 790-796. |
[68] | Price JJ, Johnson KP, Clayton DH. The evolution of echolocation in swiftlets. J Avian Biol, 2004, 35(2): 135-143. |
[69] | Medway L, Wells DR. Dark orientation by the giant swiftlet Collocalia gigas. Ibis, 1969, 111(4): 609-611. |
[70] | Jansa SA, Giarla TC, Lim BK. The phylogenetic position of the rodent genus Typhlomys and the geographic origin of muroidea. J Mammal, 2009, 90(5): 1083-1094. |
[71] | Jayson EA, Jayahari KM. Distribution of spiny tree mouse (Platacanthomys lasiurus Blyth, 1859) in the Western Ghats of Kerala, India. Mammalia, 2009, 73(4): 331-337. |
[72] | Abramov AV, Balakirev AE, Rozhnov VV. An enigmatic pygmy dormouse: molecular and morphological evidence for the species taxonomic status of Typhlomys chapensis (Rodentia: Platacanthomyidae). Zool Stud, 2014, 53: 34. |
[73] | Jin M, Hu YM, Li CK, Wang YQ. The mammal fauna in the Early Cretaceous Jehol Biota: implications for diversity and biology of Mesozoic mammals. Geol J, 2006, 41(3-4): 439-463. |
[74] | Cheng F, He K, Chen ZZ, Zhang B, Wan T, Li JT, Zhang BW, Jiang XL. Phylogeny and systematic revision of the genus Typhlomys (Rodentia, Platacanthomyidae), with description of a new species. J Mammal, 2017, 98(3): 731-743. |
[75] | Hu TL, Cheng F, Xu Z, Chen ZZ, Yu L, Ban Q, Li CL, Pan T, Zhang BW. Molecular and morphological evidence for a new species of the genus Typhlomys (Rodentia: Platacanthomyidae). Zool Res, 2021, 42(1): 100-107. |
[76] | Pu YT, Wan T, Fan RH, Fu CK, Tang KY, Jiang XL, Zhang BW, Hu TL, Chen SD, Liu SY. A new species of the genus Typhlomys Milne-Edwards, 1877 (Rodentia: Platacanthomyidae) from Chongqing, China. Zool Res, 2022, 43(3): 413-417. |
[77] |
Volodin IA, Panyutina AA, Abramov AV, Ilchenko OG, Volodina EV. Ultrasonic bouts of a blind climbing rodent (Typhlomys chapensis): acoustic analysis. Bioacoustics, 2019, 28(6): 575-591.
doi: 10.1080/09524622.2018.1509374 |
[78] | Youlatos D, Panyutina AA, Tsinoglou M, Volodin IA. Locomotion and postures of the Vietnamese pygmy dormouse Typhlomys chapensis (Platacanthomyidae, Rodentia): climbing and leaping in the blind. Mammalian Biology, 2020, 100(5): 485-496. |
[79] | Gálvez N, Meniconi P, Infante J, Bonacic C. Response of mesocarnivores to anthropogenic landscape intensification: activity patterns and guild temporal interactions. J Mammal, 2021, 102(4): 1149-1164. |
[80] |
Ulanovsky N, Moss CF. What the bat's voice tells the bat’s brain. Proc Natl Acad Sci USA, 2008, 105(25): 8491-8498.
doi: 10.1073/pnas.0703550105 pmid: 18562301 |
[81] | Schnitzler HU. Echolocation by insect-eating bats. Bioscience, 2001, 51(7): 557-569. |
[82] | Lee WJ, Falk B, Chiu C, Krishnan A, Arbour JH, Moss CF. Tongue-driven sonar beam steering by a lingual- echolocating fruit bat. PLoS Biol, 2017, 15(12): e2003148. |
[83] |
Madsen PT, Siebert U, Elemans CPH. Toothed whales use distinct vocal registers for echolocation and communication. Science, 2023, 379(6635): 928-933.
doi: 10.1126/science.adc9570 pmid: 36862790 |
[84] | Thomassen HA. Swift as sound. Design and evolution of the echolocation system in Swiftlets (Apodidae: Collocaliini)[Dissertation]. Leiden University, 2005. |
[85] | Fenton MB, Faure PA, Ratcliffe JM. Evolution of high duty cycle echolocation in bats. J Exp Biol, 2012, 215(17): 2935-2944. |
[86] | Novick A, Griffin DR. Laryngeal mechanisms in bats for the production of orientation sounds. J Exp Zool, 1961, 148(2): 125-145. |
[87] | Metzner W, Schuller G. Vocal control in echolocating bats. In: Brudzynski SM, eds. Handbook of Behavioral Neuroscience. Volume 19. Elsevier: Elsevier, 2010, 403-415. |
[88] | Brualla NLM, Wilson LAB, Doube M, Carter RT, McElligott AG, Koyabu D. The vocal apparatus: An understudied tool to reconstruct the evolutionary history of echolocation in bats? J Mammal Evol, 2023, 30(1): 79-94. |
[89] | Carter RT, Adams RA. Ontogeny of the larynx and flight ability in Jamaican fruit bats (Phyllostomidae) with considerations for the evolution of echolocation. Anat Rec (Hoboken), 2014, 297(7): 1270-1277. |
[90] |
Suthers RA. Vocal mechanisms in birds and bats: a comparative view. An Acad Bras Cienc, 2004, 76(2): 247-252.
pmid: 15258634 |
[91] | Usui K, Yamamoto T, Khannoon ER, Tokita M. Musculoskeletal morphogenesis supports the convergent evolution of bat laryngeal echolocation. Proc Biol Sci, 2024, 291(2015): 20232196. |
[92] | Schnitzler HU, Moss CF, Denzinger A. From spatial orientation to food acquisition in echolocating bats. Trends Ecol Evol, 2003, 18(8): 386-394. |
[93] |
Elemans CP, Mead AF, Jakobsen L, Ratcliffe JM. Superfast muscles set maximum call rate in echolocating bats. Science, 2011, 333(6051): 1885-1888.
doi: 10.1126/science.1207309 pmid: 21960635 |
[94] | Ratcliffe JM, Elemans CPH, Jakobsen L, Surlykke A. How the bat got its buzz. Biol Lett, 2013, 9(2): 20121031. |
[95] | Revel JP. The sarcoplasmic reticulum of the bat cricothroid muscle. J Cell Biol, 1962, 12(3): 571-588. |
[96] |
Reger JF. A comparative study on the fine structure of tongue and cricothyroid muscle of the bat, Myotis gisescens, as revealed by thin section and freeze-fracture techniques. J Ultrastruct Res, 1978, 63(3): 275-286.
pmid: 682228 |
[97] | Håkansson J, Mikkelsen C, Jakobsen L, Elemans C. Bats expand their vocal range by recruiting different laryngeal structures for echolocation and social communication. PLoS Biol, 2022, 20(11): e3001881. |
[98] | Schuller G, Suga N. Laryngeal mechanisms for the emission of CF-FM sounds in the Doppler-shift compensating bat, Rhinolophus ferrumequinum. J Comp Physiol, 1976, 107(3): 253-262. |
[99] | Schuller G, Rübsamen R. Laryngeal nerve activity during pulse emission in the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol, 1981, 143(3): 317-321. |
[100] | Suthers RA, Hector DH. Mechanism for the production of echolocating clicks by the grey swiftlet, Collocalia Spodiopygia. J Comp Physiol, 1982, 148(4): 457-470. |
[101] | Zhuang Q, Müller R. Noseleaf furrows in a horseshoe bat act as resonance cavities shaping the biosonar beam. Phys Rev Lett, 2006, 97(21): 218701. |
[102] | Zhuang Q, Müller R. Numerical study of the effect of the noseleaf on biosonar beamforming in a horseshoe bat. Phys Rev E Stat Nonlin Soft Matter Phys, 2007, 76(5 Pt 1): 051902. |
[103] | Riede T, Borgard HL, Pasch B. Laryngeal airway reconstruction indicates that rodent ultrasonic vocalizations are produced by an edge-tone mechanism. R Soc Open Sci, 2017, 4(11): 170976. |
[104] | Veselka N, McErlain DD, Holdsworth DW, Eger JL, Chhem RK, Mason MJ, Brain KL, Faure PA, Fenton MB. A bony connection signals laryngeal echolocation in bats. Nature, 2010, 463(7283): 939-942. |
[105] |
Boonman A, Bumrungsri S, Yovel Y. Nonecholocating fruit bats produce biosonar clicks with their wings. Curr Biol, 2014, 24(24): 2962-2967.
doi: 10.1016/j.cub.2014.10.077 pmid: 25484290 |
[106] |
Yovel Y, Falk B, Moss CF, Ulanovsky N. Optimal localization by pointing off axis. Science, 2010, 327(5966): 701-704.
doi: 10.1126/science.1183310 pmid: 20133574 |
[107] | Yovel Y, Geva-Sagiv M, Ulanovsky N. Click-based echolocation in bats: not so primitive after all. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2011, 197(5): 515-530. |
[108] |
Roberts LH. Confirmation of the echolocation pulse production mechanism of Rousettus. J Mammal, 1975, 56(1): 218-220.
pmid: 1113042 |
[109] | Cranford TW, Van Bonn WG, Chaplin MS, Carr JA, Kamolnick TA. Visualing dolphin sonar signal generation using high-speed video endoscopy. J Acoust Soc Am, 1997, 102(5): 3123. |
[110] | Dormer KJ. Mechanism of sound production and air recycling in delphinids: cineradiographic evidence. J Acoust Soc Am, 1979, 65(1): 229-239. |
[111] | Ridgway SH, Carder DA. Nasal pressure and sound production in an echolocating white whale, Delphinapterus leucas. In: Nachtigall PE, Moore PWB, eds. Animal Sonar: Processes and Performance. Boston: Springer, 1988, 53-60. |
[112] | Ridgway SH, Carder DA, Green RF, Gaunt AS, Gaunt SLL, Evans WE. Electromyographic and pressure events in the nasolaryngeal system of dolphins during sound production. In: Busnel RG, Fish JF, eds. Animal Sonar Systems. New York: Springer, 1980, 239-249. |
[113] | Cranford TW. The anatomy of acoustic structures in the spinner dolphin forehead as shown by X-ray computed tomography and computer graphics. In: Nachtigall PE, Moore PWB, eds. Animal Sonar: Processes and Performance. Boston: Springer, 1988, 67-77. |
[114] | Houser DS, Finneran J, Carder D, Van Bonn W, Smith C, Hoh C, Mattrey R, Ridgway S. Structural and functional imaging of bottlenose dolphin (Tursiops truncatus) cranial anatomy. J Exp Biol, 2004, 207(21): 3657-3665. |
[115] | Cranford TW, Elsberry WR, Van Bonn WG, Jeffress JA, Chaplin MS, Blackwood DJ, Carder DA, Kamolnick T, Todd MA, Ridgway SH. Observation and analysis of sonar signal generation in the bottlenose dolphin (Tursiops truncatus): evidence for two sonar sources. J Exp Mar Biol Ecol, 2011, 407(1): 81-96. |
[116] |
Cranford TW, Amundin M, Norris KS. Functional morphology and homology in the odontocete nasal complex: implications for sound generation. J Morphol, 1996, 228(3): 223-285.
doi: 10.1002/(SICI)1097-4687(199606)228:3<223::AID-JMOR1>3.0.CO;2-3 pmid: 8622183 |
[117] | Madsen PT, Lammers M, Wisniewska D, Beedholm K. Nasal sound production in echolocating delphinids (Tursiops truncatus and Pseudorca crassidens) is dynamic, but unilateral: clicking on the right side and whistling on the left side. J Exp Biol, 2013, 216(Pt 21): 4091-4102. |
[118] | Au WWL, Wei C. A review of new understanding of the role of individual structure within the head of dolphins in formation of biosonar signal and beam. Fish Oceanogr, 2017, 2(1): 555579. |
[119] | Wei C. Sound production and propagation in cetaceans. In: Rosenfeld CS, Hoffmann F, eds. Neuroendocrine Regulation of Animal Vocalization. San Diego: Academic Press, 2021, 267-295. |
[120] | Song ZC, Zhang Y, Wei C, Yang WY, Xu XH. Biosonar emission characteristics and beam control of odontocetes. Applied Physics Letters, 2020, 117(17):173701. |
宋忠长, 张宇, 魏翀, 杨武夷, 徐晓辉. 齿鲸生物声呐发射特性与波束调控研究. 物理学报. 2020, 117(17): 173701. | |
[121] | Aroyan J, Cranford TW, Kent J, Norris KS. Computer modeling of acoustic beam formation in Delphinus delphis. J Acoust Soc Am, 1992, 92(5): 2539-2545. |
[122] |
Au WWL, Houser DS, Finneran JJ, Lee WJ, Talmadge LA, Moore PW. The acoustic field on the forehead of echolocating Atlantic bottlenose dolphins (Tursiops truncatus). J Acoust Soc Am, 2010, 128(3): 1426-1434.
doi: 10.1121/1.3372643 pmid: 20815476 |
[123] | Suthers RA, Hector DH. The physiology of vocalization by the echolocating oilbird, steatornis-caripensis. J Comp Physiol, 1985, 156(2): 243-266. |
[124] | Ketten DR. Structure and function in whale ears. Bioacoustics, 1997, 8(1-2): 103-135. |
[125] | Au WWL, Popper AN, Fay RR. Hearing by whales and dolphins. New York: Springer, 2000, XVI, 485. |
[126] | McIntosh A. Our created ear. Creation, 2020, 42(1): 14-17. |
[127] |
Davies KT, Maryanto I, Rossiter SJ. Evolutionary origins of ultrasonic hearing and laryngeal echolocation in bats inferred from morphological analyses of the inner ear. Front Zool, 2013, 10(1): 2.
doi: 10.1186/1742-9994-10-2 pmid: 23360746 |
[128] |
Zook JM, Leake PA. Connections and frequency representation in the auditory brainstem of the mustache bat, Pteronotus parnellii. J Comp Neurol, 1989, 290(2): 243-261.
pmid: 2592612 |
[129] |
Vater M, Feng AS, Betz M. An HRP-study of the frequency-place map of the horseshoe bat cochlea: morphological correlates of the sharp tuning to a narrow frequency band. J Comp Physiol A, 1985, 157(5): 671-686.
pmid: 3837107 |
[130] |
Manley GA. Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci USA, 2000, 97(22): 11736-11743.
doi: 10.1073/pnas.97.22.11736 pmid: 11050203 |
[131] | Fay RR. Comparative psychoacoustics. Hear Res, 1988, 34(3): 295-305. |
[132] |
Kirkegaard M, Jørgensen JM. The inner ear macular sensory epithelia of the Daubenton's bat. J Comp Neurol, 2001, 438(4): 433-444.
pmid: 11559899 |
[133] | Simmons AM, Hom KN, Warnecke M, Simmons JA. Broadband noise exposure does not affect hearing sensitivity in big brown bats (Eptesicus fuscus). J Exp Biol, 2016, 219(Pt 7): 1031-1040. |
[134] | Surlykke A, Jakobsen L, Kalko EKV, Page RA. Echolocation intensity and directionality of perching and flying fringe-lipped bats, Trachops cirrhosus (Phyllostomidae). Front Physiol, 2013, 4: 143. |
[135] | Surlykke A, Kalko EKV. Echolocating bats cry out loud to detect their prey. PLoS One, 2008, 3(4): e2036. |
[136] | Brundin L, Flock A, Canlon B. Sound-induced motility of isolated cochlear outer hair cells is frequency-specific. Nature, 1989, 342(6251): 814-816. |
[137] |
Vater M, Lenoir M, Pujol R. Ultrastructure of the horseshoe bat's organ of corti. II. Transmission electron microscopy. J Comp Neurol, 1992, 318(4): 380-391.
pmid: 1578009 |
[138] | Dannhof BJ, Bruns V. The organ of corti in the bat Hipposideros bicolor. Hear Res, 1991, 53(2): 253-268. |
[139] | Liang YP, Yu L. Advances on molecular mechanism of the adaptive evolution of Chiroptera (bats). Hereditas (Beijing), 2015, 37(1): 25-33. |
梁运鹏, 于黎. 翼手目(蝙蝠)适应性进化分子机制的研究进展. 遗传, 2015, 37(1): 25-33. | |
[140] |
Jones G, Teeling EC, Rossiter SJ. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats. Front Physiol, 2013, 4: 117.
doi: 10.3389/fphys.2013.00117 pmid: 23755015 |
[141] | Sadanandan KR, Ko MC, Low GW, Gahr M, Edwards SV, Hiller M, Sackton TB, Rheindt FE, Sin SYW, Baldwin MW. Convergence in hearing-related genes between echolocating birds and mammals. Proc Natl Acad Sci USA, 2023, 120(43): e2307340120. |
[142] |
Fisher SE, Vargha-Khadem F, Watkins KE, Monaco AP, Pembrey ME. Localisation of a gene implicated in a severe speech and language disorder. Nat Genet, 1998, 18(2): 168-170.
pmid: 9462748 |
[143] | Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 2001, 413(6855): 519-523. |
[144] | Haesler S, Rochefort C, Georgi B, Licznerski P, Osten P, Scharff C. Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus area X. PLoS Biol, 2007, 5(12): 2885-2897. |
[145] |
Fujita E, Tanabe Y, Shiota A, Ueda M, Suwa K, Momoi MY, Momoi T. Ultrasonic vocalization impairment of Foxp2 (R552H) knockin mice related to speech-language disorder and abnormality of Purkinje cells. Proc Natl Acad Sci USA, 2008, 105(8): 3117-3122.
doi: 10.1073/pnas.0712298105 pmid: 18287060 |
[146] | Kurt S, Fisher SE, Ehret G. Foxp2 mutations impair auditory-motor association learning. PLoS One, 2012, 7(3): e33130. |
[147] |
Li G, Wang JH, Rossiter SJ, Jones G, Zhang SY. Accelerated FoxP2 evolution in echolocating bats. PLoS One, 2007, 2(9): e900.
doi: 10.1371/journal.pone.0000900 pmid: 17878935 |
[148] | Chai SM, Tian R, Rong XH, Li GT, Chen BY, Ren WH, Xu SX, Yang G. Evidence of echolocation in the common shrew from molecular convergence with other echolocating mammals. Zool Stud, 2020, 59(4): 4. |
[149] | Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P. Prestin is the motor protein of cochlear outer hair cells. Nature, 2000, 405(6783): 149-155. |
[150] | Belyantseva IA, Adler HJ, Curi R, Frolenkov GI, Kachar B. Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells. J Neurosci, 2000, 20(24): Rc116. |
[151] | Brownell WE, Spector AA, Raphael RM, Popel AS. Micro- and nanomechanics of the cochlear outer hair cell. Annu Rev Biomed Eng, 2001, 3(1): 169-194. |
[152] | Liberman MC, Gao JG, He DZZ, Wu XD, Jia SP, Zuo J. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature, 2002, 419(6904): 300-304. |
[153] | Liu Z, Li SD, Wang W, Xu DM, Murphy RW, Shi P. Parallel evolution of KCNQ4 in echolocating bats. PLoS One, 2011, 6(10): e26618. |
[154] |
Liu Y, Han NJ, Franchini LF, Xu HH, Pisciottano F, Elgoyhen AB, Rajan KE, Zhang SY. The voltage-gated potassium channel subfamily KQT member 4 (KCNQ4) displays parallel evolution in echolocating bats. Mol Biol Evol, 2012, 29(5): 1441-1450.
doi: 10.1093/molbev/msr310 pmid: 22319145 |
[155] | Davies KTJ, Cotton JA, Kirwan JD, Teeling EC, Rossiter SJ. Parallel signatures of sequence evolution among hearing genes in echolocating mammals: an emerging model of genetic convergence. Heredity (Edinb), 2012, 108(5): 480-489. |
[156] | Shen YY, Liang L, Li GS, Murphy RW, Zhang YP. Parallel evolution of auditory genes for echolocation in bats and toothed whales. PLoS Genet, 2012, 8(6): e1002788. |
[157] | Lee JH, Lewis KM, Moural TW, Kirilenko B, Borgonovo B, Prange G, Koessl M, Huggenberger S, Kang C, Hiller M. Molecular parallelism in fast-twitch muscle proteins in echolocating mammals. Sci Adv, 2018, 4(9): eaat9660. |
[158] | Li Y, Liu Z, Shi P, Zhang JZ. The hearing gene Prestin unites echolocating bats and whales. Curr Biol, 2010, 20(2): R55-R56. |
[159] | Liu Y, Cotton JA, Shen B, Han XQ, Rossiter SJ, Zhang SY. Convergent sequence evolution between echolocating bats and dolphins. Curr Biol, 2010, 20(2): R53-R54. |
[160] | Parker J, Tsagkogeorga G, Cotton JA, Liu Y, Provero P, Stupka E, Rossiter SJ. Genome-wide signatures of convergent evolution in echolocating mammals. Nature, 2013, 502(7470): 228-231. |
[161] | Liu Z, Qi FY, Zhou X, Ren HQ, Shi P. Parallel sites implicate functional convergence of the hearing gene prestin among echolocating mammals. Mol Biol Evol, 2014, 31(9): 2415-2424. |
[162] | Jones G, Holderied WW. Bat echolocation calls: adaptation and convergent evolution. Proc Biol Sci, 2007, 274(1612): 905-912. |
[1] | 刘靖, 周琦. 脊椎动物染色体在序列和空间构象的演化[J]. 遗传, 2025, 47(2): 183-199. |
[2] | 孟玉,杨若林. 基于基因家族大小的比较研究脊椎动物的适应性进化[J]. 遗传, 2019, 41(2): 158-174. |
[3] | 任丽倩, 刘薇, 李文博, 刘文军, 孙蕾. 脊椎动物Cyclophilin A肽基脯氨酰顺反异构酶活性及遗传变异分析[J]. 遗传, 2016, 38(8): 736-745. |
[4] | 苏鹏 冯少姝 李庆伟. NF-кB和IκB在不同动物类群中的结构及功能研究进展[J]. 遗传, 2016, 38(6): 523-531. |
[5] | 梁运鹏, 于黎. 翼手目(蝙蝠)适应性进化分子机制的研究进展[J]. 遗传, 2015, 37(1): 25-33. |
[6] | 梁佼,刘欣,吴芬芳,李庆伟. 无颌类脊椎动物适应性免疫系统的研究进展[J]. 遗传, 2009, 31(10): 969-976. |
[7] | 谢飞,高波,宋成义,陈国宏. “睡美人”转座子的研究进展[J]. 遗传, 2007, 29(7): 785-792. |
[8] | 黄艳群~,邓学梅,李,宁,邱祥聘. 脊椎动物多趾性状的研究进展[J]. 遗传, 2004, 26(3): 0-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: