遗传 ›› 2025, Vol. 47 ›› Issue (2): 258-270.doi: 10.16288/j.yczz.24-126
收稿日期:
2024-05-06
修回日期:
2024-06-28
出版日期:
2025-02-20
发布日期:
2024-08-13
通讯作者:
张蔚,博士,研究员,研究方向:演化生物学。E-mail: weizhangvv@pku.edu.cn作者简介:
倪嘉欣,博士研究生,专业方向:动物学。E-mail: nijiaxin2020@stu.pku.edu.cn
基金资助:
Received:
2024-05-06
Revised:
2024-06-28
Published:
2025-02-20
Online:
2024-08-13
Supported by:
摘要:
演化发育生物学研究结合演化生物学和发育生物学,关注生物发育过程的演化及性状多样化的机制。自1984年同源异形盒基因被发现,许多模式生物形态建成的遗传机制获得了系统性研究;相对而言,非模式生物具有丰富而复杂的演化创新性状,然而其背后的演化遗传机制尚未被完全解析,相关的研究亟待加强。在非模式生物类群中,蝶类具有丰富的物种多样性,超过18,700个物种;其翅结构相对简单但呈现出复杂多样的花纹,可能具有防御、求偶等多样的生物学功能,并受到较强的选择压力,因此是演化发育生物学研究的经典体系。聚焦蝶类的演化发育生物学研究历程,早期的比较形态学研究提出了蛱蝶平面图,为蝶翅花纹的演化发育生物学研究提供了理论框架;而之后一系列对蝶类翅盘的干扰实验则证实翅盘发育过程与蝶翅表型的关联;近年来的研究通过整合遗传学、发育生物学、基因组学等研究手段,已在多个蝶类研究体系对其重要的遗传工具包基因/基因座进行了解析,进一步完善了蝶翅花纹演化发育学研究的理论框架。从方法学角度,原位杂交和基因编辑等技术在开展上述研究中发挥了重要作用,而杂交链式反应技术和CRISPR/Cas9技术的发展则进一步提升了蝶类基因功能验证的可行性。在未来的研究中,可通过开发和优化适用于蝶类等鳞翅目昆虫的RNA干扰技术和基因编辑技术,推动更多的基因功能研究,进而比较和解析生物复杂性状,拓展演化发育生物学研究体系;上述研究还可拓展至生态-演化-发育角度,探索遗传和环境因素对以蝶翅花纹为代表的复杂表型的塑造机制,增进理解生物多样性形成和演化这一关键的科学问题。
倪嘉欣, 张蔚. 蝶翅花纹的演化发育生物学研究进展[J]. 遗传, 2025, 47(2): 258-270.
Jiaxin Ni, Wei Zhang. Progress and prospects on evolutionary developmental biology of butterfly wing patterns[J]. Hereditas(Beijing), 2025, 47(2): 258-270.
图2
遗传工具包基因/基因座在蝶翅花纹发育中的作用 A~C:聚焦偏瞳蔽眼蝶眼斑发育过程和调控基因研究。A图为偏瞳蔽眼蝶眼斑发育相关基因的突变体;B图为偏瞳蔽眼蝶幼虫和蛹期翅盘Dll和wg基因的表达模式;C图为眼斑发育可以简化为4步,分别为眼斑发育起始于眼斑中心的形成,紧接着信号分子从该中心往四周扩散,并被相应的配体所响应,最后色素在事先决定好的范围合成,形成一个眼斑。D~F:基于袖蝶翅花纹的演化发育生物学研究。D图为optix基因决定红色花纹的分布模式;E图为WntA基因决定黑色素的范围;F图为cortex基因座可能决定翅局部的黑色和黄色花纹,并影响翅整体的鳞片类型。G~H:基于枯叶蛱蝶翅腹面表型多样性的研究。G图为5种基本的叶形乔装拟态表型;H图为cortex基因座嵌合敲除突变体显示了扰乱的叶形花纹。"
表1
决定蝶翅花纹发育的遗传工具包基因/基因座示例"
遗传工具包基因/基因座 | 基因描述 | 基因参与决定的表型 |
---|---|---|
cortex | 编码细胞周期调控因子[ | 袖蝶翅颜色与鳞片类型[ 枯叶蛱蝶拟叶多态性[ 斑凤蝶翅黑色、白色和棕色花纹[ 桦尺蠖翅黑色花纹[ 鹿眼蛱蝶翅季节多态性[ |
Dll | 编码同源结构域转录因子[ | 果蝇腿盘发育[ 蝴蝶翅眼斑中心的确立和信号传递[ |
optix | 编码同源结构域转录因子[ | 袖蝶、偏瞳蔽眼蝶、鹿眼蛱蝶、小红蛱蝶和银纹红袖蝶翅红色和橙色花纹[ 鹿眼蛱蝶翅结构色[ 果蝇眼形态建成、眼部色素合成[ |
WntA | 编码形态发生素[ | 袖蝶、小红蛱蝶、鹿眼蛱蝶、偏瞳蔽眼蝶翅黑色素表达范围[ |
wg | 编码形态发生素[ | 在果蝇中调节体节极性、决定翅盘背腹轴分化[ 蝶翅眼斑合成[ 蝶翅形状[ |
[1] | Darwin CR. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray, 1859. |
[2] | Huxley J. Evolution: the Modern Synthesis. London: George Allen and Unwin, 1942. |
[3] |
Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell, 2008, 134(1): 25-36.
doi: 10.1016/j.cell.2008.06.030 pmid: 18614008 |
[4] |
McGinnis W, Garber RL, Wirz J, Kuroiwa A, Gehring WJ. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell, 1984, 37(2): 403-408.
pmid: 6327065 |
[5] |
Graham A, Papalopulu N, Krumlauf R. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell, 1989, 57(3): 367-378.
doi: 10.1016/0092-8674(89)90912-4 pmid: 2566383 |
[6] | Futuyma DJ. Evolution. Sunderland: Sinauer Associates, 2013. |
[7] | Carroll SB. Endless Forms Most Beautiful. New York: W W Norton and Company, 2005. |
[8] |
Wei FW. A new era for evolutionary developmental biology in non-model organisms. Sci China Life Sci, 2020, 63(8): 1251-1253.
doi: 10.1007/s11427-020-1748-0 pmid: 32548692 |
[9] | Schneider I, Amemiya C. Developmental-genetic toolkit for evolutionary developmental biology. In: Kliman RM, eds. Encyclopedia of Evolutionary Biology. Oxford: Academic Press, 2016, 404-408. |
[10] |
Hoekstra HE, Coyne JA. The locus of evolution: evo devo and the genetics of adaptation. Evolution, 2007, 61(5): 995-1016.
doi: 10.1111/j.1558-5646.2007.00105.x pmid: 17492956 |
[11] |
Beldade P, Brakefield PM. The genetics and evo-devo of butterfly wing patterns. Nat Rev Genet, 2002, 3(6): 442-452.
pmid: 12042771 |
[12] | Zhang ZQ, Hooper JNA, Van Soest RWM, Pisera A, Crowther AL, Tyler S, Schilling S, Eschmeyer WN, Fong JD, Blackburn DC, Wake DB, Wilson DE, Reeder DM, Fritz U, Hodda M, Guidetti R, Bertolani R, Mayer G, De Sena Oliveira I, Adrain JM, Bamber RN, Kury AB, Prendini L, Harvey MS, Beaulieu F, Dowling APG, Klompen H, de Moraes GJ, Walter DE, Fan QH, Pešić V, Smit H, Bochkov AV, Khaustov AA, Baker A, Wohltmann A, Wen TH, Amrine JW, Beron P, Lin JZ, Gabrys G, Husband RW, Bolton SJ, Uusitalo M, Schatz H, Behan-Pelletier VM, Oconnor BM, Norton RA, Dunlop JA, Penney D, Minelli A, Shear WA, Ahyong ST, Lowry JK, Alonso M, Boxshall GA, Castro P, Gerken S, Karaman GS, Goy JW, Jones DS, Meland K, Rogers DC, Svavarsson J, Janssens F, Christiansen KA, Ingrisch S, Brock PD, Marshall J, Beccaloni GW, Eggleton P, Mound LA, Slipinski SA, Leschen RAB, Lawrence JF, Holzenthal RW, Morse JC, Kjer KM, van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC, Minet J, Mitter C, Mutanen M, Regier JC, Simonsen TJ, Wahlberg N, Yen SH, Zahiri R, Adamski D, Baixeras J, Bartsch D, Bengtsson BA, Brown JW, Bucheli SR, Davis DR, De Prins J, De Prins W, Epstein ME, Gentili-Poole P, Gielis C, Haettenschwiler P, Hausmann A, Holloway JD, Kallies A, Karsholt O, Kawahara AY, Koster S, Kozlov MV, Lafontaine JD, Lamas G, Landry JF, Lee S, Nuss M, Park KT, Penz C, Rota J, Schintlmeister A, Schmidt BC, Sohn JC, Solis MA, Tarmann GM, Warren AD, Weller S, Yakovlev RV, Zolotuhin VV, Zwick A, Pape T, Blagoderov V, Mostovski MB, Emig CC, Segers HH, Monks S, Richardson DJ. Animal biodiversity: an outline of higher-level classification and taxonomic richness. Zootaxa, 2011, 3148(3148): 7-237. |
[13] |
Parchem RJ, Perry MW, Patel NH. Patterns on the insect wing. Curr Opin Genet Dev, 2007, 17(4): 300-308.
pmid: 17627807 |
[14] |
Nijhout HF. Ontogeny of the color pattern on the wings of Precis coenia (Lepidoptera: Nymphalidae). Dev Biol, 1980, 80(2): 275-288.
pmid: 7192661 |
[15] | Brakefield PM, French V. Butterfly wings: the evolution of development of colour patterns. Bioessays, 1999, 21(5): 391-401. |
[16] |
Otaki JM. Color pattern analysis of nymphalid butterfly wings: revision of the nymphalid groundplan. Zoolog Sci, 2012, 29(9): 568-576.
doi: 10.2108/zsj.29.568 pmid: 22943780 |
[17] | Schwanwitsch BN. On the ground-plan of wing-pattern in Nymphalids and certain other Families of the Rhopaloeerous Lepidoptera. Proc Zool Soc London, 1924, 94(2): 509-528. |
[18] | Nijhout HF. The Development and Evolution of Butterfly Wing Patterns. Washngton: Smithsonian Institution Press, 1991. |
[19] | Liu GC, Chang Z, Chen L, He JW, Dong ZW, Yang J, Lu SH, Zhao RP, Wan WT, Ma GL, Li J, Zhang R, Wang W, Li XY. Genome size variation in butterflies (Insecta, Lepidotera, Papilionoidea): a thorough phylogenetic comparison. Syst Entomol, 2020, 45(3): 571-582. |
[20] |
French V. Pattern formation in colour on butterfly wings. Curr Opin Genet Dev, 1997, 7(4): 524-529.
pmid: 9309185 |
[21] |
De Celis JF, Diaz-Benjumea FJ. Developmental basis for vein pattern variations in insect wings. Int J Dev Biol, 2003, 47(7-8): 653-663.
pmid: 14756341 |
[22] | Roskam JC, Brakefield PM. Seasonal polyphenism in Bicyclus (Lepidoptera: Satyridae) butterflies: different climates need different cues. Biol J Linn Soc, 1999, 66(3): 345-356. |
[23] |
Espeland M, Podsiadlowski L. How butterfly wings got their pattern. Science, 2022, 378(6617): 249-250.
doi: 10.1126/science.ade5689 pmid: 36264812 |
[24] |
Kronforst MR, Kapan DD, Gilbert LE. Parallel genetic architecture of parallel adaptive radiations in mimetic Heliconius butterflies. Genetics, 2006, 174(1): 535-539.
pmid: 16783007 |
[25] | Shilo BZ, Barkai N. Buffering global variability of morphogen gradients. Dev Cell, 2017, 40(5): 429-438. |
[26] | Nijhout HF. A comprehensive model for colour pattern formation in butterflies. Proc R Soc Lond, 1990, 239(1294): 81-113. |
[27] |
Nijhout HF. Cautery-induced colour patterns in Precis coenia (Lepidoptera: Nymphalidae). J Embryol Exp Morphol, 1985, 86: 191-203.
pmid: 4031740 |
[28] | Brakefield PM, Beldade P, Zwaan BJ. Surgical manipulations on pupal wings from the African butterfly Bicyclus anynana: damage and cauteries. Cold Spring Harb Protoc, 2009, 2009(5): pdb.prot5204. |
[29] |
Serfas MS, Carroll SB. Pharmacologic approaches to butterfly wing patterning: sulfated polysaccharides mimic or antagonize cold shock and alter the interpretation of gradients of positional information. Dev Biol, 2005, 287(2): 416-424.
pmid: 16216238 |
[30] |
Colombres M, Henríquez JP, Reig GF, Scheu J, Calderón R, Alvarez A, Brandan E, Inestrosa NC. Heparin activates Wnt signaling for neuronal morphogenesis. J Cell Physiol, 2008, 216(3): 805-815.
doi: 10.1002/jcp.21465 pmid: 18449906 |
[31] | Yan D, Lin XH. Shaping morphogen gradients by proteoglycans. Cold Spring Harb Perspect Biol, 2009, 1(3): a002493. |
[32] |
Martin A, Papa R, Nadeau NJ, Hill RI, Counterman BA, Halder G, Jiggins CD, Kronforst MR, Long AD, McMillan WO, Reed RD. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proc Natl Acad Sci USA, 2012, 109(31): 12632-12637.
doi: 10.1073/pnas.1204800109 pmid: 22802635 |
[33] | Beldade P, Brakefield PM, Long AD. Generating phenotypic variation: prospects from “evo-devo”research on Bicyclus anynana wing patterns. Evol Dev, 2005, 7(2): 101-107. |
[34] | Brakefield PM, Gates J, Keys D, Kesbeke F, Wijngaarden PJ, Monteiro A, French V, Carroll SB. Development, plasticity and evolution of butterfly eyespot patterns. Nature, 1996, 384(6606): 236-242. |
[35] | Beldade P, Brakefield PM, Long AD. Contribution of Distal-less to quantitative variation in butterfly eyespots. Nature, 2002, 415(6869): 315-318. |
[36] |
Gonsalves FC, DasGupta R. Function of the wingless signaling pathway in Drosophila. Methods Mol Biol, 2008, 469: 115-125.
doi: 10.1007/978-1-60327-469-2_10 pmid: 19109707 |
[37] |
Yang L, Meng F, Ma D, Xie W, Fang M. Bridging Decapentaplegic and Wingless signaling in Drosophila wings through repression of naked cuticle by Brinker. Development, 2013, 140(2): 413-422.
doi: 10.1242/dev.082578 pmid: 23250215 |
[38] | Banerjee TD. Molecular mechanisms underlying venation and color patterning in Bicyclus anynana butterflies[Dissertation]. National University of Singapore, 2021. |
[39] | Özsu N, Chan QY, Chen B, Das Gupta M, Monteiro A. Wingless is a positive regulator of eyespot color patterns in Bicyclus anynana butterflies. Dev Biol, 2017, 429(1): 177-185. |
[40] |
Beldade P, Monteiro A. Eco-evo-devo advances with butterfly eyespots. Curr Opin Genet Dev, 2021, 69: 6-13.
doi: 10.1016/j.gde.2020.12.011 pmid: 33434722 |
[41] | Reed RD, Papa R, Martin A, Hines HM, Counterman BA, Pardo-Diaz C, Jiggins CD, Chamberlain NL, Kronforst MR, Chen R, Halder G, Nijhout HF, McMillan WO. optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science, 2011, 333(6046): 1137-1141. |
[42] | Martin A, McCulloch KJ, Patel NH, Briscoe AD, Gilbert LE, Reed RD. Multiple recent co-options of Optix associated with novel traits in adaptive butterfly wing radiations. Evodevo, 2014, 5(1): 7. |
[43] |
Lewis JJ, Geltman RC, Pollak PC, Rondem KE, Van Belleghem SM, Hubisz MJ, Munn PR, Zhang LL, Benson C, Mazo-Vargas A, Danko CG, Counterman BA, Papa R, Reed RD. Parallel evolution of ancient, pleiotropic enhancers underlies butterfly wing pattern mimicry. Proc Natl Acad Sci USA, 2019, 116(48): 24174-24183.
doi: 10.1073/pnas.1907068116 pmid: 31712408 |
[44] |
Van Belleghem SM, Ruggieri AA, Concha C, Livraghi L, Hebberecht L, Rivera ES, Ogilvie JG, Hanly JJ, Warren IA, Planas S, Ortiz-Ruiz Y, Reed R, Lewis JJ, Jiggins CD, Counterman BA, McMillan WO, Papa R. High level of novelty under the hood of convergent evolution. Science, 2023, 379(6636): 1043-1049.
doi: 10.1126/science.ade0004 pmid: 36893249 |
[45] | Kapan DD, Flanagan NS, Tobler A, Papa R, Reed RD, Gonzalez JA, Restrepo MR, Martinez L, Maldonado K, Ritschoff C, Heckel DG, McMillan WO. Localization of Müllerian mimicry genes on a dense linkage map of Heliconius erato. Genetics, 2006, 173(2): 735-757. |
[46] |
Mazo-Vargas A, Concha C, Livraghi L, Massardo D, Wallbank RWR, Zhang LL, Papador JD, Martinez-Najera D, Jiggins CD, Kronforst MR, Breuker CJ, Reed RD, Patel NH, McMillan WO, Martin A. Macroevolutionary shifts of WntA function potentiate butterfly wing-pattern diversity. Proc Natl Acad Sci USA, 2017, 114(40): 10701-10706.
doi: 10.1073/pnas.1708149114 pmid: 28923954 |
[47] | Nadeau NJ, Pardo-Diaz C, Whibley A, Supple MA, Saenko SV, Wallbank RWR, Wu GC, Maroja L, Ferguson L, Hanly JJ, Hines H, Salazar C, Merrill RM, Dowling AJ, Ffrench-Constant RH, Llaurens V, Joron M, McMillan WO, Jiggins CD. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature, 2016, 534(7605): 106-110. |
[48] | Livraghi L, Hanly JJ, Van Bellghem SM, Montejo- Kovacevich G, Van der Heijden ES, Loh LS, Ren A, Warren IA, Lewis JJ, Concha C, Hebberecht L, Wright CJ, Walker JM, Foley J, Goldberg ZH, Arenas-Castro H, Salazar C, Perry MW, Papa R, Martin A, McMillan WO, Jiggins CD. Cortex cis-regulatory switches establish scale colour identity and pattern diversity in Heliconius. eLife, 2021, 10: e68549. |
[49] |
Teng DQ, Li FY, Zhang W. Using comprehensive machine-learning models to classify complex morphological characters. Ecol Evol, 2021, 11(15): 10421-10431.
doi: 10.1002/ece3.7845 pmid: 34367585 |
[50] |
Wang ST, Teng DQ, Li XY, Yang PW, Da W, Zhang YM, Zhang YB, Liu GC, Zhang XS, Wan WT, Dong ZW, Wang DH, Huang S, Jiang ZS, Wang QY, Lohman DJ, Wu YJ, Zhang LL, Jia FH, Westerman E, Zhang L, Wang W, Zhang W. The evolution and diversification of oakleaf butterflies. Cell, 2022, 185(17): 3138-3152.e20.
doi: 10.1016/j.cell.2022.06.042 pmid: 35926506 |
[51] | Choi HMT, Schwarzkopf M, Fornace ME, Acharya A, Artavanis G, Stegmaier J, Cunha A, Pierce NA. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development, 2018, 145(12): dev165753. |
[52] | Banerjee TD, Murugesan SN, Connahs H, Monteiro A. Spatial and temporal regulation of Wnt signaling pathway members in the development of butterfly wing patterns. Sci Adv, 2023, 9(30): eadg3877. |
[53] | Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science, 2003, 300(5620): 764. |
[54] |
Hockemeyer D, Wang HY, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng XD, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol, 2011, 29(8): 731-734.
doi: 10.1038/nbt.1927 pmid: 21738127 |
[55] |
Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
doi: 10.1126/science.1231143 pmid: 23287718 |
[56] | Martin A, Reed RD. Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems. Dev Biol, 2014, 395(2): 367-378. |
[57] | Concha C, Wallbank RWR, Hanly JJ, Fenner J, Livraghi L, Rivera ES, Paulo DF, Arias C, Vargas M, Sanjeev M, Morrison C, Tian D, Aguirre P, Ferrara S, Foley J, Pardo-Diaz C, Salazar C, Linares M, Massardo D, Counterman BA, Scott MJ, Jiggins CD, Papa R, Martin A, McMillan WO. Interplay between developmental flexibility and determinism in the evolution of mimetic Heliconius wing patterns. Curr Biol, 2019, 29(23): 3996-4009.e4. |
[58] |
Monteiro A, Glaser G, Stockslager S, Glansdorp N, Ramos D. Comparative insights into questions of Lepidopteran wing pattern homology. BMC Dev Biol, 2006, 6: 52.
pmid: 17090321 |
[59] |
Zhang LL, Mazo-Vargas A, Reed RD. Single master regulatory gene coordinates the evolution and development of butterfly color and iridescence. Proc Natl Acad Sci USA, 2017, 114(40): 10707-10712.
doi: 10.1073/pnas.1709058114 pmid: 28923944 |
[60] | Thayer RC, Allen FI, Patel NH. Structural color in Junonia butterflies evolves by tuning scale lamina thickness. eLife, 2020, 9: e52187. |
[61] |
Vankuren NW, Massardo D, Nallu S, Kronforst MR. Butterfly mimicry polymorphisms highlight phylogenetic limits of gene reuse in the evolution of diverse adaptations. Mol Biol Evol, 2019, 36(12): 2842-2853.
doi: 10.1093/molbev/msz194 pmid: 31504750 |
[62] | Van’t Hof AE, Campagne P, Rigden DJ, Yung CJ, Lingley J, Quail MA, Hall N, Darby AC, Saccheri IJ. The industrial melanism mutation in British peppered moths is a transposable element. Nature, 2016, 534(7605): 102-105. |
[63] |
van der Burg KRL, Lewis JJ, Brack BJ, Fandino RA, Mazo-Vargas A, Reed RD. Genomic architecture of a genetically assimilated seasonal color pattern. Science, 2020, 370(6517): 721-725.
doi: 10.1126/science.aaz3017 pmid: 33154142 |
[64] | Tian S, Banerjee TD, Qi Wee JL, Wang YH, Murugesan SN, Monteiro A. A micro-RNA drives a 100-million-year adaptive evolution of melanic patterns in butterflies and moths. bioRxiv, 2024, doi: 10.1101/2024.02.09.579741. |
[65] | Livraghi L, Hanly JJ, Evans E, Wright CJ, Loh LS, Mazo-Vargas A, Kamrava K, Carter A, van der Heijden ESM, Reed RD, Papa R, Jiggins CD, Martin A. A long non-coding RNA at the cortex locus controls adaptive colouration in butterflies. bioRxiv, 2024, doi: 10.1101/2024.02.09.579710. |
[66] | Fandino RA, Brady NK, Chatterjee M, McDonald JMC, Livraghi L, van der Burg KRL, Mazo-Vargas A, Markenscoff- Papadimitriou E, Reed RD. The ivory lncRNA regulates seasonal color patterns in buckeye butterflies. bioRxiv, 2024, doi: 10.1101/2024.02.09.579733. |
[67] |
Westerman EL, VanKuren NW, Massardo D, Tenger-Trolander A, Zhang W, Hill RI, Perry M, Bayala E, Barr K, Chamberlain N, Douglas TE, Buerkle N, Palmer SE, Kronforst MR. Aristaless controls butterfly wing color variation used in mimicry and mate choice. Curr Biol, 2018, 28(21): 3469-3474.e4.
doi: S0960-9822(18)31135-7 pmid: 30415702 |
[68] | Bayala EX, VanKuren NW, Massardo D, Kronforst MR. From the formation of embryonic appendages to the color of wings: conserved and novel roles of aristaless1 in butterfly development. bioRxiv, 2021, doi: 10.1101/2021.12.02.470931. |
[69] | Kunte K, Zhang W, Tenger-Trolander A, Palmer DH, Martin A, Reed RD, Mullen SP, Kronforst MR. doublesex is a mimicry supergene. Nature, 2014, 507(7491): 229-232. |
[70] | Palmer DH, Kronforst MR. A shared genetic basis of mimicry across swallowtail butterflies points to ancestral co-option of doublesex. Nat Commun, 2020, 11(1): 6. |
[71] |
Woronik A, Tunström K, Perry MW, Neethiraj R, Stefanescu C, de la Paz Celorio-Mancera M, Brattström O, Hill J, Lehmann P, Käkelä R, Wheat CW. A transposable element insertion is associated with an alternative life history strategy. Nat Commun, 2019, 10(1): 5757.
doi: 10.1038/s41467-019-13596-2 pmid: 31848330 |
[72] | Hanly JJ, Francescutti CM, Loh LS, Corning OBWH, Long DJ, Nakatani MA, Porter AH, Martin A. Genetics of yellow-orange color variation in a pair of sympatric sulphur butterflies. Cell Rep, 2023, 42(8): 112820. |
[73] | Sivakumar S, Gorbsky GJ. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol, 2015, 16(2): 82-94. |
[74] | Dey BK, Zhao XL, Popo-Ola E, Campos AR. Mutual regulation of the Drosophila disconnected (disco) and Distal-less (Dll) genes contributes to proximal-distal patterning of antenna and leg. Cell Tissue Res, 2009, 338(2): 227-240. |
[75] |
Seimiya M, Gehring WJ. The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless- independent mechanism. Development, 2000, 127(9): 1879-1886.
doi: 10.1242/dev.127.9.1879 pmid: 10751176 |
[76] | Martín M, Ostalé CM, de Celis JF.. Patterning of the Drosophila L2 vein is driven by regulatory interactions between region-specific transcription factors expressed in response to Dpp signalling. Development, 2017, 144(17): 3168-3176. |
[77] |
Macdonald WP, Martin A, Reed RD. Butterfly wings shaped by a molecular cookie cutter: evolutionary radiation of lepidopteran wing shapes associated with a derived Cut/wingless wing margin boundary system. Evol Dev, 2010, 12(3): 296-304.
doi: 10.1111/j.1525-142X.2010.00415.x pmid: 20565540 |
[78] |
Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci USA, 2004, 101(43): 15275-15278.
pmid: 15492210 |
[79] | Ma ZZ, Zheng Y, Chao ZJ, Chen HT, Zhang YH, Yin MZ, Shen J, Yan S. Visualization of the process of a nanocarrier- mediated gene delivery: stabilization, endocytosis and endosomal escape of genes for intracellular spreading. J Nanobiotechnology, 2022, 20(1): 124. |
[80] | Komata S, Yoda S, KonDo Y, Shinozaki S, Tamai K, Fujiwara H. Functional unit of supergene in female- limited Batesian mimicry of Papilio polytes. Genetics, 2023, 223(2): iyac177. |
[81] | Givnish TJ. How a better understanding of adaptations can yield better use of morphology in plant systematics:toward Eco-Evo-Devo. In: Stuessy TF, Mayer V, Horandl E, eds. Deep Morphology. New York: Lubrecht and Cramer, 2003, 141: 273-295. |
[82] |
Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP. Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol, 2010, 25(8): 459-467.
doi: 10.1016/j.tree.2010.05.006 pmid: 20557976 |
[83] |
Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C, Erwin DH, Pavlicev M, Schlosser G, Widder S, Laubichler MD, Wagner GP. The origin and evolution of cell types. Nat Rev Genet, 2016, 17(12): 744-757.
doi: 10.1038/nrg.2016.127 pmid: 27818507 |
[84] | Prakash A, Dion E, Monteiro A. The molecular basis of macrochaete diversification highlighted by a single-cell atlas of Bicyclus anynana butterfly pupal forewings. bioRxiv, 2023, doi: 10.1101/2023.08.23.554425. |
[1] | 孙仲夷, 张国捷. 为什么应该弃用“进化”而使用“演化”[J]. 遗传, 2025, 47(1): 5-17. |
[2] | 潘东霞, 王辉, 熊本海, 唐湘方. CRISPR-Cas基因编辑技术在羊生产应用中研究进展[J]. 遗传, 2024, 46(9): 690-700. |
[3] | 杨森, 马宝霞, 钱泓润, 崔婕妤, 张潇筠, 李利达, 魏泽辉, 张智英, 王建刚, 徐坤. 基于小型化Cas蛋白的CRISPR/Gal4BD-Cas供体适配基因编辑系统研究[J]. 遗传, 2024, 46(9): 716-726. |
[4] | 马宝霞, 杨森, 吕明, 王昱人, 常立业, 韩艺帆, 王建刚, 郭杨, 徐坤. 不同CRISPR/Cas9供体适配基因编辑系统的比较及优化研究[J]. 遗传, 2024, 46(6): 466-477. |
[5] | 曹振林, 李金红, 周铭辉, 张曼婷, 王宁, 陈一飞, 李嘉欣, 祝青松, 宫雯珺, 杨绪晨, 方小龙, 和家贤, 李美娜. 大豆花药优势表达基因GmFLA22a调控雄性育性的功能研究[J]. 遗传, 2024, 46(4): 333-345. |
[6] | 鲍艳春, 戴伶俐, 刘在霞, 马凤英, 王宇, 刘永斌, 谷明娟, 娜日苏, 张文广. CRISPR/Cas9系统在畜禽遗传改良中研究进展[J]. 遗传, 2024, 46(3): 219-231. |
[7] | 卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
[8] | 王秉政, 张超, 张佳丽, 孙锦. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45(7): 593-601. |
[9] | 吴仲胜, 高誉, 杜勇涛, 党颂, 何康敏. CRISPR-Cas9基因编辑技术对细胞内源蛋白进行荧光标记的实验操作[J]. 遗传, 2023, 45(2): 165-175. |
[10] | 刘梅珍, 王立人, 李咏梅, 马雪云, 韩红辉, 李大力. 利用CRISPR/Cas9技术构建基因编辑大鼠模型[J]. 遗传, 2023, 45(1): 78-87. |
[11] | 张潇筠, 徐坤, 沈俊岑, 穆璐, 钱泓润, 崔婕妤, 马宝霞, 陈知龙, 张智英, 魏泽辉. 一种新型提高HDR效率的CRISPR/Cas9-Gal4BD供体适配基因编辑系统[J]. 遗传, 2022, 44(8): 708-719. |
[12] | 韩玉婷, 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-14. |
[13] | 王海涛, 李亭亭, 黄勋, 马润林, 刘秋月. 遗传修饰技术在绵羊分子设计育种中的应用[J]. 遗传, 2021, 43(6): 580-600. |
[14] | 王海燕, 龚志云, 蒋甲福, 周宝良, 娄群峰, 曹清河, 席梦利, 陈佩度, 顾铭洪, 张天真, 陈发棣, 陈劲枫, 李宗芸, 王秀娥. 江苏省植物细胞遗传学研究回顾与展望[J]. 遗传, 2021, 43(5): 397-424. |
[15] | 彭定威, 李瑞强, 曾武, 王敏, 石翾, 曾检华, 刘小红, 陈瑶生, 何祖勇. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: