遗传 ›› 2025, Vol. 47 ›› Issue (2): 258-270.doi: 10.16288/j.yczz.24-126

• 综述 • 上一篇    下一篇

蝶翅花纹的演化发育生物学研究进展

倪嘉欣(), 张蔚()   

  1. 北京大学,蛋白质与植物基因研究国家重点实验室,生命科学学院,生命科学联合中心,北京 100871
  • 收稿日期:2024-05-06 修回日期:2024-06-28 出版日期:2025-02-20 发布日期:2024-08-13
  • 通讯作者: 张蔚,博士,研究员,研究方向:演化生物学。E-mail: weizhangvv@pku.edu.cn
  • 作者简介:倪嘉欣,博士研究生,专业方向:动物学。E-mail: nijiaxin2020@stu.pku.edu.cn
  • 基金资助:
    国家自然科学基金项目(32325009);国家自然科学基金项目(32170420)

Progress and prospects on evolutionary developmental biology of butterfly wing patterns

Jiaxin Ni(), Wei Zhang()   

  1. State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
  • Received:2024-05-06 Revised:2024-06-28 Published:2025-02-20 Online:2024-08-13
  • Supported by:
    National Natural Science Foundation of China(32325009);National Natural Science Foundation of China(32170420)

摘要:

演化发育生物学研究结合演化生物学和发育生物学,关注生物发育过程的演化及性状多样化的机制。自1984年同源异形盒基因被发现,许多模式生物形态建成的遗传机制获得了系统性研究;相对而言,非模式生物具有丰富而复杂的演化创新性状,然而其背后的演化遗传机制尚未被完全解析,相关的研究亟待加强。在非模式生物类群中,蝶类具有丰富的物种多样性,超过18,700个物种;其翅结构相对简单但呈现出复杂多样的花纹,可能具有防御、求偶等多样的生物学功能,并受到较强的选择压力,因此是演化发育生物学研究的经典体系。聚焦蝶类的演化发育生物学研究历程,早期的比较形态学研究提出了蛱蝶平面图,为蝶翅花纹的演化发育生物学研究提供了理论框架;而之后一系列对蝶类翅盘的干扰实验则证实翅盘发育过程与蝶翅表型的关联;近年来的研究通过整合遗传学、发育生物学、基因组学等研究手段,已在多个蝶类研究体系对其重要的遗传工具包基因/基因座进行了解析,进一步完善了蝶翅花纹演化发育学研究的理论框架。从方法学角度,原位杂交和基因编辑等技术在开展上述研究中发挥了重要作用,而杂交链式反应技术和CRISPR/Cas9技术的发展则进一步提升了蝶类基因功能验证的可行性。在未来的研究中,可通过开发和优化适用于蝶类等鳞翅目昆虫的RNA干扰技术和基因编辑技术,推动更多的基因功能研究,进而比较和解析生物复杂性状,拓展演化发育生物学研究体系;上述研究还可拓展至生态-演化-发育角度,探索遗传和环境因素对以蝶翅花纹为代表的复杂表型的塑造机制,增进理解生物多样性形成和演化这一关键的科学问题。

关键词: 蝶翅, 演化发育生物学, 遗传工具包, 原位杂交, 基因编辑

Abstract:

Evolutionary developmental biology combines evolutionary biology and developmental biology, focusing on the evolution of developmental processes and the mechanisms of morphological diversification. Since the discovery of the homeobox gene in 1984, the genetic mechanisms of morphogenesis in multiple model organisms have been systematically studied. In contrast, non-model organisms are rich in complex evolutionary traits, yet their underlying genetic mechanisms have not yet been fully elucidated, so more relevant studies are still needed. Among non-model organisms, butterflies are rich in species diversity, with more than 18,700 species. In particular, butterfly wings have simple flat structures but exhibit diverse and complex patterns, likely associated with complex functions(e.g., defense and courtship) and subject to strong selective pressures, which makes them a classic system for evolutionary developmental biology studies. Early comparative morphological studies proposed the Nymphalid ground plan, providing a theoretical framework for the evolutionary developmental biology of butterfly wing patterns; a series of interference experiments on butterfly wing discs later confirmed the association between the wing developmental process and phenotypes. In recent years, by integrating genetics, developmental biology, and genomics research methods, genetic toolkit genes and loci involved in wing pattern regulation have been identified in several butterfly species, further improving the theoretical framework for studying butterfly wing pattern evolution and development. From the methodological perspective, experimental methods such as in situ hybridization and gene editing have played an important role in evolutionary developmental biology studies of butterfly wings, and the development of hybridization chain reaction technology and CRISPR/Cas9 gene editing technology has further advanced the feasibility of functional validation in butterflies. In the future, the development and optimization of lepidopteran RNA interference and gene editing technologies can promote functional studies, thus expanding the research systems of evolutionary developmental biology by comparing and analyzing complex traits. The above research can also be broadened to an ecological-evolutionary-developmental context to explore genetic and environmental factors that shape complex phenotypes(e.g., butterfly wing patterns), thereby deepening the understanding of key scientific issues such as the origin and evolution of biodiversity.

Key words: butterfly wing, evolutionary developmental biology(evo-devo), genetic toolkit, in situ hybridization, gene editing