[1] Yu L, Wang XY, Jin W, Luan PT, Ting N, Zhang YP. Adaptive evolution of digestive RNASE1 genes in leaf- eating monkeys revisited: new insights from ten additional colobines. Mol Biol Evol , 2010, 27(1): 121-131. [2] Yu L, Jin W, Zhang X, Wang D, Zheng JS, Yang G, Xu SX, Cho S, Zhang YP. Evidence for positive selection on the leptin gene in Cetacea and Pinnipedia. PLoS One , 2011, 6(10): e26579. [3] Yu L, Zhang YP. The unusual adaptive expansion of pancreatic ribonuclease gene in carnivora. Mol Biol Evol , 2006, 23(12): 2326-2335. [4] Zhang J. Parallel adaptive origins of digestive RNases in Asian and African leaf monkeys. Nat Genet , 2006, 38(7): 819-823. [5] Zhang J, Zhang YP, Rosenberg HF. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nat Genet , 2002, 30(4): 411-415. [6] Davies KT, Cotton JA, Kirwan JD, Teeling EC, Rossiter SJ. Parallel signatures of sequence evolution among hearing genes in echolocating mammals: an emerging model of genetic convergence. Heredity , 2012, 108(5): 480-489. [7] Feng P, Zheng JS, Rossiter SJ, Wang D, Zhao HB. Massive losses of taste receptor genes in toothed and baleen whales. Genome Biol Evol , 2014, 6(6): 1254-1265. [8] Goo SM, Cho S. The expansion and functional diversification of the mammalian ribonuclease a superfamily epitomizes the efficiency of multigene families at generating biological novelty. Genome Biol Evol , 2013, 5(11): 2124-2140. [9] 张劲硕, 张俊鹏, 梁冰, 张树义. 世界翼手目动物分类系统和种类最新报道. 动物学杂志, 2005, 40(2): 79. [10] Simmons NB, Order Chiroptera. In: Wilson DE, Reeder DM, eds. Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd ed. Baltimore: Johns Hopkins University Press, 2005. [11] Zhang JS, Han NJ, Jones G, Lin LK, Zhang JP, Zhu GJ, Huang DW, Zhang SY. A new species of Barbastella (Chiroptera: Vespertilionidae) from north China. J Mammal , 2007, 88(6): 1393-1403. [12] Zhou ZM, Guillén-Servent A, Lim BK, Eger JL, Wang YX, Jiang XL. A new species from southwestern China in the Afro-Palearctic lineage of the horseshoe bats (Rhinolophus ). J Mammal , 2009, 90(1): 57-73. [13] Teeling EC, Springer MS, Madsen O, Bates P, O'brien SJ, Murphy WJ. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science , 2005, 307(5709): 580-584. [14] Thomas SP, Suthers RA. The physiology and energetics of bat flight. J Exp Biol , 1972, 57(2): 317-335. [15] Maina JN. What it takes to fly: the structural and functional respiratory refinements in birds and bats. J Exp Biol , 2000, 203(20): 3045-3064. [16] 陈星, 沈永义, 张亚平. 线粒体 DNA 在分子进化研究中的应用. 动物学研究, 2012, 33(6): 566-573. [17] Shen YY, Liang L, Zhu ZH, Zhou WP, Irwin DM, Zhang YP. Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proc Natl Acad Sci USA , 2010, 107(19): 8666-8671. [18] Bakewell MA, Shi P, Zhang J. More genes underwent positive selection in chimpanzee evolution than in human evolution. Proc Natl Acad Sci USA , 2007, 104(18): 7489-7494. [19] Kosiol C, Vinař T, da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R, Siepel A. Patterns of positive selection in six mammalian genomes. PLoS Genet , 2008, 4(8): e1000144. [20] Zhang GJ, Cowled C, Shi ZL, Huang ZY, Bishop-Lilly KA, Fang XD, Wynne JW, Xiong ZQ, Baker ML, Zhao W, Tachedjian M, Zhu YB, Zhou P, Jiang XT, Ng J, Yang L, Wu LJ, Xiao J, Feng Y, Chen YX, Sun XQ, Zhang Y, Marsh GA, Crameri G, Broder CC, Frey KG, Wang LF, Wang J. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science , 2013, 339(6118): 456-460. [21] O'Keefe K, Li H, Zhang Y. Nucleocytoplasmic shuttling of p53 is essential for MDM2-mediated cytoplasmic degradation but not ubiquitination. Mol Cell Biol , 2003, 23(18): 6396-6405. [22] Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 p |