[1] | Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM . RNA-guided human genome engineering via Cas9 prashant. Science, 2013,339(6121):823-826. [DOI] | [2] | Hsu PD, Lander ES, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157(6):1262-1278. [DOI] | [3] | Kim H, Kim JS . A guide to genome engineering with programmable nucleases. Nat Rev Genet, 2014,15(5):321-334. [DOI] | [4] | Gaj T, Gersbach CA, Barbas CF. ZFN , TALEN,CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013,31(7):397-405. [DOI] | [5] | Ahmad HI, Ahmad MJ, Asif AR, Adnan M, Iqbal MK, Mehmood K, Muhammad SA, Bhuiyan AA, Elokil A, Du X, Zhao C, Liu X, Xie S . A review of crispr-based genome editing: Survival, evolution and challenges. Curr Issues Mol Biol, 2018,28:47-68. [DOI] | [6] | Musunuru K . The hope and hype of CRISPR-Cas9 genome editing: A review. JAMA Cardiol, 2017,2(8):914-919. [DOI] | [7] | Li L, Wu LP, Chandrasegaran S . Functional domains in Fok I restriction endonuclease. Proc Natl Acad Sci USA, 1992,89(10):4275-4279. [DOI] | [8] | Kim YG, Chandrasegaran S . Chimeric restriction endonuclease. Proc Natl Acad Sci USA, 1994,91(3):883-887. [DOI] | [9] | Kim YG, Cha J, Chandrasegaran S . Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA, 1996,93(3):1156-1160. [DOI] | [10] | Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S . Zinc finger nucleases: Custom- designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res, 2005,33(18):5978-5990. [DOI] | [11] | Xiao A, Hu YY, Wang WY, Yang ZP, Wang ZX, Huang P, Tong XJ, Zhang B, Lin S . Progress in zinc finger nuclease engineering for targeted genome modification. Hereditas (Beijing), 2011,33(7):665-683. | [11] | 肖安, 胡莹莹, 王唯晔, 杨志芃, 王展翔, 黄鹏, 佟向军, 张博, 林硕 . 人工锌指核酸酶介导的基因组定点修饰技术. 遗传, 2011,33(7):665-683. [DOI] | [12] | Bibikova M, Golic M, Golic KG, Carroll D . Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 2002,161(3):1169-1175. [DOI] | [13] | Bibikova M, Beumer K, Trautman JK, Carroll D . Enhancing gene targeting with designed zinc finger nucleases. Science, 2003,300(5620):764. [DOI] | [14] | Kim J-S . Genome editing comes of age. Nat Protoc, 2016,11(9):1573-1578. [DOI] | [15] | Hatada I, Horii T . Genome editing: A breakthrough in life science and medicine. Endocr J, 2016,63(2):105-110. [DOI] |
[1] |
Xiaohua Hao, Shuang Hu, Dan Zhao, Lianfu Tian, Zijing Xie, Sha Wu, Wenli Hu, Han Lei, Dongping Li.
OsGA3ox genes regulate rice fertility and plant height by synthesizing diverse active GA
[J]. Hereditas(Beijing), 2023, 45(9): 845-855.
|
[2] |
Biwei Lai, Lei Chen, Sijia Lu.
The current status of photoperiod adaptability in soybean
[J]. Hereditas(Beijing), 2023, 45(9): 793-800.
|
[3] |
Bingzheng Wang, Chao Zhang, Jiali Zhang, Jin Sun.
Conditional editing of the Drosophila melanogaster genome using single transcripts expressing Cas9 and sgRNA
[J]. Hereditas(Beijing), 2023, 45(7): 593-601.
|
[4] |
Dantong Xu, Yifei Wang, Jiali Cai, Wentao Gong, Xiangchun Pan, Yuhan Tian, Qingpeng Shen, Jiaqi Li, Xiaolong Yuan.
Study on detection of CNVs using human whole genome bisulfite sequencing data
[J]. Hereditas(Beijing), 2023, 45(4): 324-340.
|
[5] |
Zhongsheng Wu, Yu Gao, Yongtao Du, Song Dang, Kangmin He.
The protocol of tagging endogenous proteins with fluorescent tags using CRISPR-Cas9 genome editing
[J]. Hereditas(Beijing), 2023, 45(2): 165-175.
|
[6] |
Lan Wang, Fan Zeng, Rongfeng Huang, Shu Lin, Zhihui Zhang, Min-Dian Li.
Adipocyte reconstitution of Npy4r gene in Npy4r silenced mice promotes diet-induced obesity
[J]. Hereditas(Beijing), 2023, 45(2): 144-155.
|
[7] |
Meizhen Liu, Liren Wang, Yongmei Li, Xueyun Ma, Honghui Han, Dali Li.
Generation of genetically modified rat models via the CRISPR/Cas9 technology
[J]. Hereditas(Beijing), 2023, 45(1): 78-87.
|
[8] |
Xiaojun Zhang, Kun Xu, Juncen Shen, Lu Mu, Hongrun Qian, Jieyu Cui, Baoxia Ma, Zhilong Chen, Zhiying Zhang, Zehui Wei.
A CRISPR/Cas9-Gal4BD donor adapting system for enhancing homology-directed repair
[J]. Hereditas(Beijing), 2022, 44(8): 708-719.
|
[9] |
Chong Zhang, Zixuan Wei, Min Wang, Yaosheng Chen, Zuyong He.
Editing MC1R in human melanoma cells by CRISPR/Cas9 and functional analysis
[J]. Hereditas(Beijing), 2022, 44(7): 581-590.
|
[10] |
Xiaoqin Liu, Feiran Chang, Sijie Liu, Fei Wu, Daochun Kong.
The functional analysis of the ubiquitin ligase Brl2 in the repair of DNA double-strand breaks
[J]. Hereditas(Beijing), 2022, 44(7): 609-617.
|
[11] |
Huan Zhao, Bin Zhou.
Pancreatic beta cells regeneration
[J]. Hereditas(Beijing), 2022, 44(5): 370-382.
|
[12] |
Wanjing Ping, Yichen Liu, Qiaomei Fu.
Exploring the evolution of archaic humans through sedimentary ancient DNA
[J]. Hereditas(Beijing), 2022, 44(5): 362-369.
|
[13] |
Mengxiao Wang, Margaret S. Ho.
Recent advances on the role of glia in physiological behaviors: insights from Drosophila melanogaster
[J]. Hereditas(Beijing), 2022, 44(4): 300-312.
|
[14] |
Sanzeng Zhao, Danyu Kong, Peiyong Xin, Jinfang Chu, Yinglang Wan, Hong-Qing Ling, Yi Liu.
AtCPS V326M significantly affect the biosynthesis of gibberellins
[J]. Hereditas(Beijing), 2022, 44(3): 245-252.
|
[15] |
Huijie Yang, De Li, Huiling Bai, Ming Zhang, Jun Huang, Xiaoqing Yuan.
Diagnosis, treatment and genetic analysis of a case of Alstrom syndrome caused by compoud heterozygous mutation of ALMS1
[J]. Hereditas(Beijing), 2022, 44(12): 1148-1157.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|