[1] | Rudin N, Haber JE . Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol Cell Biol, 1988,8(9):3918-3928. | [2] | Capecchi MR . Altering the genome by homologous recombination. Science, 1989,244(4910):1288-1292. | [3] | Lin FL, Sperle K, Sternberg N . Recombination in mouse L-cells between DNA introduced into cells and homologous chromosomal sequences. Proc Natl Acad Sci USA, 1985,82(5):1391-1395. | [4] | Jasin M . Genetic manipulation of genomes with rare- cutting endonucleases. Trends Genet, 1996,12(6):224-228. | [5] | Belfort M, Roberts RJ . Homing endonucleases: keeping the house in order. Nucleic Acids Res, 1997,25(17):3379-3388. | [6] | Jeggo PA . DNA breakage and repair. Adv Genet, 1998,38:185-218. | [7] | Smith J, Grizot S, Arnould S, Duclert A, Epinat JC, Chames P, Prieto J, Redondo P, Blanco FJ, Bravo J, Montoya G, Paques F, Duchateau P . A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Research, 2006,34(22):e149. | [8] | Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC . Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature, 2005,435(7042):646-651. | [9] | Kim YG, Cha J, Chandrasegaran S . Hybrid restriction enzymes: zinc finger fusions to FokⅠ cleavage domain. Proc Natl Acad Sci U S A, 1996,93(3):1156-1160. | [10] | Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD . Genome editing with engineered zinc finger nucleases. Nat Rev Genet, 2010,11(9):636-646. | [11] | Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B . TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokⅠ DNA- cleavage domain. Nucleic Acids Res, 2011,39(1):359-372. | [12] | Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B . Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res, 2011,39(14):6315-6325. | [13] | Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF . Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010,186(2):757-761. | [14] | Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ . A TALE nuclease architecture for efficient genome editing. Nat Biotechnol, 2011,29(2):143-148. | [15] |
|
[1] |
Zhong Bian, Dongping Cao, Wenshu Zhuang, Shuwei Zhang, Qiaoquan Liu, Lin Zhang.
Revelation of rice molecular design breeding: the blend of tradition and modernity
[J]. Hereditas(Beijing), 2023, 45(9): 718-740.
|
[2] |
Bingzheng Wang, Chao Zhang, Jiali Zhang, Jin Sun.
Conditional editing of the Drosophila melanogaster genome using single transcripts expressing Cas9 and sgRNA
[J]. Hereditas(Beijing), 2023, 45(7): 593-601.
|
[3] |
Yifan Yu, Zhen OuYang, Juan Guo, Yujun Zhao, Luqi Huang.
Progress on regulatory elements of plant plastid genetic engineering
[J]. Hereditas(Beijing), 2023, 45(6): 501-513.
|
[4] |
Danni Liu, Haiping Wu, Guohua Zhou.
Research progress of visual detection in rapid on-site detection of pathogen nucleic acid
[J]. Hereditas(Beijing), 2023, 45(4): 306-323.
|
[5] |
Zhongsheng Wu, Yu Gao, Yongtao Du, Song Dang, Kangmin He.
The protocol of tagging endogenous proteins with fluorescent tags using CRISPR-Cas9 genome editing
[J]. Hereditas(Beijing), 2023, 45(2): 165-175.
|
[6] |
Zhichen Tian, Xiaojuan Yin.
Advances in the application of induced pluripotent stem cells in pediatric diseases
[J]. Hereditas(Beijing), 2023, 45(1): 42-51.
|
[7] |
Fei Gao, Yu Wang, Jiaxiang Du, Xuguang Du, Jianguo Zhao, Dengke Pan, Sen Wu, Yaofeng Zhao.
Advances and applications of genetically modified pig models in biomedical and agricultural field
[J]. Hereditas(Beijing), 2023, 45(1): 6-28.
|
[8] |
Meizhen Liu, Liren Wang, Yongmei Li, Xueyun Ma, Honghui Han, Dali Li.
Generation of genetically modified rat models via the CRISPR/Cas9 technology
[J]. Hereditas(Beijing), 2023, 45(1): 78-87.
|
[9] |
Xiaojun Zhang, Kun Xu, Juncen Shen, Lu Mu, Hongrun Qian, Jieyu Cui, Baoxia Ma, Zhilong Chen, Zhiying Zhang, Zehui Wei.
A CRISPR/Cas9-Gal4BD donor adapting system for enhancing homology-directed repair
[J]. Hereditas(Beijing), 2022, 44(8): 708-719.
|
[10] |
Mingliang Jiang, Hong Lang, Xiaonan Li, Ye Zu, Jing Zhao, Shenling Peng, Zhen Liu, Zongxiang Zhan, Zhongyun Piao.
Progress on plant orphan genes
[J]. Hereditas(Beijing), 2022, 44(8): 682-694.
|
[11] |
Chong Zhang, Zixuan Wei, Min Wang, Yaosheng Chen, Zuyong He.
Editing MC1R in human melanoma cells by CRISPR/Cas9 and functional analysis
[J]. Hereditas(Beijing), 2022, 44(7): 581-590.
|
[12] |
Yangjinghui Zhang, Peiyao Chang, Zishu Yang, Yuhang Xue, Xueqi Li, Yang Zhang.
Advances in epigenetic modification affecting anthocyanin synthesis
[J]. Hereditas(Beijing), 2022, 44(12): 1117-1127.
|
[13] |
Yao Liu, Xianhui Zhou, Shuhong Huang, Xiaolong Wang.
Prime editing: a search and replace tool with versatile base changes
[J]. Hereditas(Beijing), 2022, 44(11): 993-1008.
|
[14] |
Yuting Han, Bowen Xu, Yutong Li, Xinyi Lu, Xizhi Dong, Yuhao Qiu, Qinyun Che, Ruibao Zhu, Li Zheng, Xiaochen Li, Xu Si, Jianquan Ni.
The cutting edge of gene regulation approaches in model organism Drosophila
[J]. Hereditas(Beijing), 2022, 44(1): 3-14.
|
[15] |
Guangwu Yang, Yuan Tian.
The F-box gene Ppa promotes lipid storage in Drosophila
[J]. Hereditas(Beijing), 2021, 43(6): 615-622.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|