Hereditas(Beijing) ›› 2020, Vol. 42 ›› Issue (1): 57-72.doi: 10.16288/j.yczz.19-288
• Special Section: 3D Genome • Previous Articles Next Articles
Received:
2019-11-07
Revised:
2019-12-10
Online:
2020-01-20
Published:
2019-12-23
Contact:
Fang Yuda
E-mail:yuda.fang@sjtu.edu.cn
Supported by:
Yu Zhang, Yuda Fang. Progresses on the structure and function of cohesin[J]. Hereditas(Beijing), 2020, 42(1): 57-72.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Cohesin complex subunits and its regulatory factors"
类型 | 酿酒酵母 | 线虫 | 脊椎动物 | 拟南芥 | 水稻 | 玉米 |
---|---|---|---|---|---|---|
cohesin 亚基 | PSM1 | HIM-1 | SMC1α SMC1β | SMC1 | SMC1 | |
PSM3 | SMC-3 | SMC3 | SMC3 | SMC3 | ||
RAD21 REC8 | SCC-1/ COH-2 COH-1 COH-3 REC8 | RAD21 RAD21L REC8 | SYN2/ RAD21.1 SYN4/ RAD21.3 SYN3/ RAD21.2 SYN1/DIF1 | RAD21-1 RAD21-2 RAD21-3 RAD21-4 /OsREC8 | AFD1 | |
PSC3 REC11 | SCC3 | SA1 SA2 STAG3 | SCC3 | SCC3* | ||
加载因子 | MIS4 | NIPBL | NIPBL | SCC2 | OsJ_22834* OsI_24633* | |
SSL3 | Mau-2 | SCC4/MAU2 | SCC4 | DEK15 | ||
维持和解离因子 | CTF7/ ECO1 | ESCO1 ESCO2 | CTF7 | OsI_19739* | ESC01* | |
PDS5 | ELV-14 | PDS5A PDS5B | PDS5E PDS5B PDS5D PDS5C PDS5A | |||
WPL1 | WAPL-1 | WAPAL | WAPL1 WAPL2 | OsI_34181* | ACL54412* | |
CUT2 | IFY-1 | Securin/ PTTG | ||||
CUT1 | SEP-1 | Separase/ ESP1 | AtESP1 | OsI_09098* OsI_08535* | ||
PLO1 | POLO | PLK1 | ||||
SGO2 SGO1 | SGO1 | SGO2 SGO1 | SGO1 SGO2 | OsSGO1 OsSGO2* | ZMSGO2 ZMSGO1 |
[1] |
van Ruiten MS, Rowland BD . SMC complexes: universal DNA looping machines with distinct regulators. Trends Genet, 2018,34(6):477-487.
doi: 10.1016/j.tig.2018.03.003 pmid: 29606284 |
[2] |
Hirano T . Condensin-Based chromosome organization from bacteria to vertebrates. Cell, 2016,164(5):847-857.
doi: 10.1016/j.cell.2016.01.033 pmid: 26919425 |
[3] |
Hassler M, Shaltiel IA, Haering CH . Towards a unified model of SMC complex function. Curr Biol, 2018,28(21):R1266-R1281.
doi: 10.1016/j.cub.2018.08.034 pmid: 30399354 |
[4] |
Watanabe Y, Nurse P . Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature, 1999,400(6743):461-464.
doi: 10.1038/22774 pmid: 10440376 |
[5] |
Klein F, Mahr P, Galova M, Buonomo SB, Michaelis C, Nairz K, Nasmyth K . A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell, 1999,98(1):91-103.
doi: 10.1016/S0092-8674(00)80609-1 pmid: 10412984 |
[6] |
Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Shevchenko A, Nasmyth K . Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell, 2000,5(2):243-254.
doi: 10.1016/s1097-2765(00)80420-7 pmid: 10882066 |
[7] |
Watrin E, Peters JM . Cohesin and DNA damage repair. Exp Cell Res, 2006,312(14):2687-2693.
doi: 10.1016/j.yexcr.2006.06.024 pmid: 16876157 |
[8] |
Patel L, Kang R, Rosenberg SC, Qiu YJ, Raviram R, Chee S, Hu R, Ren B, Cole F, Corbett KD . Dynamic reorganization of the genome shapes the recombination landscape in meiotic prophase. Nat Struct Mol Biol, 2019,26(3):164-174.
doi: 10.1038/s41594-019-0187-0 pmid: 30778236 |
[9] | Peng L, Zhang FX . The structure and function of SMC proteins. Hereditas(Beijing), 2001,23(2):173-276. |
彭莉, 张飞雄 . SMC蛋白的结构和功能. 遗传, 2001,23(2):173-276. | |
[10] |
Zhang Y, Zhang XF, Ba ZQ, Liang ZY, Dring EW, Hu HL, Lou JM, Kyritsis N, Zurita J, Shamim MS, Aiden AP, Aiden EL, Alt FW . The fundamental role of chromatin loop extrusion in physiological V(D)J recombination. Nature, 2019,573(7775):600-604.
doi: 10.1038/s41586-019-1547-y pmid: 31511698 |
[11] |
Hirano T, Kobayashi R, Hirano M . Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell, 1997,89(4):511-521.
doi: 10.1016/s0092-8674(00)80233-0 pmid: 9160743 |
[12] |
Uhlmann F, Lottspeich F, Nasmyth K . Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature, 1999,400(6739):37-42.
doi: 10.1038/21831 pmid: 10403247 |
[13] |
Sergeant J, Taylor E, Palecek J, Fousteri M, Andrews EA, Sweeney S, Shinagawa H, Watts FZ, Lehmann AR . Composition and architecture of the Schizosaccharomyces pombe Rad18 (Smc5-6) complex. Mol Cell Biol, 2005,25(1):172-184.
doi: 10.1128/MCB.25.1.172-184.2005 pmid: 15601840 |
[14] |
Haering CH, Löwe J, Hochwagen A, Nasmyth K . Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell, 2002,9(4):773-788.
doi: 10.1016/s1097-2765(02)00515-4 pmid: 11983169 |
[15] |
Cobbe N, Heck MM . The evolution of ATPase activity in SMC proteins. Proteins, 2006,63(3):685-696.
doi: 10.1002/prot.20795 pmid: 16437548 |
[16] |
Ames GF, Lecar H . ATP-dependent bacterial transporters and cystic fibrosis: analogy between channels and transporters. FASEB J, 1992,6(9):2660-2666.
doi: 10.1096/fasebj.6.9.1377140 pmid: 1377140 |
[17] |
Hopfner KP, Karcher A, Shin DS, Craig L, Arthur LM, Carney JP, Tainer JA . Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell, 2000,101(7):789-800.
doi: 10.1016/s0092-8674(00)80890-9 pmid: 10892749 |
[18] |
Jeppsson K, Kanno T, Shirahige K, Sjögren C . The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat Rev Mol Cell Biol, 2014,15(9):601-614.
doi: 10.1038/nrm3857 pmid: 25145851 |
[19] |
Volkov A, Mascarenhas J, Andrei-Selmer C, Ulrich HD, Graumann PL . A prokaryotic condensin/cohesin-like complex can actively compact chromosomes from a single position on the nucleoid and binds to DNA as a ring-like structure. Mol Cell Biol, 2003,23(16):5638-5650.
doi: 10.1128/mcb.23.16.5638-5650.2003 pmid: 12897137 |
[20] |
Schleiffer A, Kaitna S, Maurer-Stroh S, Glotzer M, Nasmyth K, Eisenhaber F . Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol Cell, 2003,11(3):571-575.
doi: 10.1016/s1097-2765(03)00108-4 pmid: 12667442 |
[21] |
Gruber S, Haering CH, Nasmyth K . Chromosomal cohesin forms a ring. Cell, 2003,112(6):765-777.
doi: 10.1016/s0092-8674(03)00162-4 pmid: 12654244 |
[22] |
Nasmyth K, Haering CH . The structure and function of SMC and kleisin complexes. Annu Rev Biochem, 2005,74:595-648.
doi: 10.1146/annurev.biochem.74.082803.133219 pmid: 15952899 |
[23] |
Gligoris T, Löwe J . Structural insights into ring formation of cohesin and related SMC complexes. Trends Cell Biol, 2016,26(9):680-693.
doi: 10.1016/j.tcb.2016.04.002 pmid: 27134029 |
[24] |
Liu Cm CM, McElver J, Tzafrir I, Joosen R, Wittich P, Patton D, Van Lammeren AA, Meinke D. Condensin and cohesin knockouts in Arabidopsis exhibit a titan seed phenotype. Plant J, 2002,29(4):405-415.
doi: 10.1046/j.1365-313x.2002.01224.x pmid: 11846874 |
[25] |
Liu CM, Meinke DW . The titan mutants of Arabidopsis are disrupted in mitosis and cell cycle control during seed development. Plant J, 1998,16(1):21-31.
doi: 10.1046/j.1365-313x.1998.00268.x pmid: 9807824 |
[26] |
Siddiqui NU, Stronghill PE, Dengler RE, Hasenkampf CA, Riggs CD . Mutations in Arabidopsis condensin genes disrupt embryogenesis, meristem organization and segregation of homologous chromosomes during meiosis. Development, 2003,130(14):3283-3295.
doi: 10.1242/dev.00542 pmid: 12783798 |
[27] |
Sumara I, Vorlaufer E, Gieffers C, Peters BH, Peters JM . Characterization of vertebrate cohesin complexes and their regulation in prophase. . Cell Biol, 2000,151(4):749-762.
doi: 10.1083/jcb.151.4.749 pmid: 11076961 |
[28] |
Chelysheva L, Diallo S, Vezon D, Gendrot G, Vrielynck N, Belcram K, Rocques N, Márquez-Lema A, Bhatt AM, Horlow C, Mercier R, Mézard C, Grelon M . AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. . Cell Sci, 2005,118(Pt 20):4621-4632.
doi: 10.1242/jcs.02583 pmid: 16176934 |
[29] |
Yuan L, Yang X, Makaroff CA . Plant cohesins, common themes and unique roles. Curr Protein Pept Sci, 2011,12(2):93-104.
doi: 10.2174/138920311795684904 pmid: 21348848 |
[30] |
Peirson BN, Bowling SE, Makaroff CA . A defect in synapsis causes male sterility in a T-DNA-tagged Arabidopsis thaliana mutant. Plant J, 1997,11(4):659-669.
doi: 10.1046/j.1365-313x.1997.11040659.x pmid: 9161029 |
[31] |
Cai X, Dong F, Edelmann RE, Makaroff CA . The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J Cell Sci, 2003,116(Pt 14):2999-3007.
doi: 10.1242/jcs.00601 pmid: 12783989 |
[32] |
Dong F, Cai X, Makaroff CA . Cloning and characterization of two Arabidopsis genes that belong to the RAD21/ REC8 family of chromosome cohesin proteins. Gene, 2001,271(1):99-108.
doi: 10.1016/s0378-1119(01)00499-1 pmid: 11410371 |
[33] |
Jiang L, Xia M, Strittmatter LI, Makaroff CA . The Arabidopsis cohesin protein SYN3 localizes to the nucleolus and is essential for gametogenesis. Plant J, 2007,50(6):1020-1034.
doi: 10.1111/j.1365-313X.2007.03106.x pmid: 17488242 |
[34] |
Bhatt AM, Lister C, Page T, Fransz P, Findlay K, Jones GH, Dickinson HG, Dean C . The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family. Plant J, 1999,19(4):463-472.
doi: 10.1046/j.1365-313x.1999.00548.x pmid: 10504568 |
[35] |
da Costa-Nunes JA, Bhatt AM, O'Shea S, West CE, Bray CM, Grossniklaus U, Dickinson HG . Characterization of the three Arabidopsis thaliana RAD21 cohesins reveals differential responses to ionizing radiation. J Exp Bot, 2006,57(4):971-983.
doi: 10.1093/jxb/erj083 pmid: 16488915 |
[36] |
Bai X, Peirson BN, Dong F, Xue C, Makaroff CA . Isolation and characterization of SYN1, a RAD21-like gene essential for meiosis in Arabidopsis. Plant Cell, 1999,11(3):417-430.
doi: 10.1105/tpc.11.3.417 pmid: 10072401 |
[37] |
Zhang YL, Zhang H, Gao YJ, Yan LL, Yu XY, Yang YH, Xu WY, Pu CX, Sun Y . Protein phosphatase 2A B'α and B'βprotect the centromeric Cohesion during meiosis I. Plant Physiol, 2019,179(4):1556-1568.
doi: 10.1104/pp.18.01320 pmid: 30705069 |
[38] |
Yuan GL, Ahootapeh BH, Komaki S, Schnittger A, Lillo C, De Storme N, Geelen D . Protein phoshatase 2A B'αand βmaintain centromeric sister chromatid cohesion during meiosis in Arabidopsis. Plant Physiol, 2018,178(1):317-328.
doi: 10.1104/pp.18.00281 pmid: 30061120 |
[39] |
da Costa-Nunes JA, Capitão C, Kozak J, Costa-Nunes P, Ducasa GM, Pontes O, Angelis KJ . The AtRAD21.1 and AtRAD21.3 Arabidopsis cohesins play a synergistic role in somatic DNA double strand break damage repair. Bmc Plant Biol, 2014,14:353.
doi: 10.1186/s12870-014-0353-9 pmid: 25511710 |
[40] |
Shao T, Tang D, Wang KJ, Wang M, Che LX, Qin BX, Yu HX, Li M, Gu MH, Cheng ZK . OsREC8 is essential for chromatid cohesion and metaphase I monopolar orientation in rice meiosis. Plant Physiol, 2011,156(3):1386-1396.
doi: 10.1104/pp.111.177428 |
[41] |
Zhang LR, Tao JY, Wang SX, Chong K, Wang T . The rice OsRad21-4, an orthologue of yeast Rec8 protein, is required for efficient meiosis. Plant Mol Biol, 2006,60(4):533-554.
doi: 10.1007/s11103-005-4922-z |
[42] |
Tao J, Zhang L, Chong K, Wang T . OsRAD21-3, an orthologue of yeast RAD21, is required for pollen development in Oryza sativa. Plant J, 2007,51(5):919-930.
doi: 10.1111/j.1365-313X.2007.03190.x pmid: 17617177 |
[43] |
Gong C, Li T, Li Q, Yan L, Wang T . Rice OsRAD21-2 is expressed in actively dividing tissues and its ectopic expression in yeast results in aberrant cell division and growth. . Integr Plant Biol, 2011,53(1):14-24.
doi: 10.1111/j.1744-7909.2010.01009.x pmid: 21205177 |
[44] |
Golubovskaya IN, Hamant O, Timofejeva L, Wang CJ, Braun D, Meeley R, Cande WZ . Alleles of afd1 dissect REC8 functions during meiotic prophase I. . Cell Sci, 2006,119(Pt 16):3306-3315.
doi: 10.1242/jcs.03054 pmid: 16868028 |
[45] |
Terret ME, Sherwood R, Rahman S, Qin J, Jallepalli PV . Cohesin acetylation speeds the replication fork. Nature, 2009,462(7270):231-234.
doi: 10.1038/nature08550 pmid: 19907496 |
[46] |
Fay A, Misulovin Z, Li J, Schaaf CA, Gause M, Gilmour DS, Dorsett D . Cohesin selectively binds and regulates genes with paused RNA polymerase. Curr Biol, 2011,21(19):1624-1634.
doi: 10.1016/j.cub.2011.08.036 |
[47] |
Gillespie PJ, Hirano T . Scc2 couples replication licensing to sister chromatid cohesion in Xenopus egg extracts. Curr Biol, 2004,14(17):1598-1603.
doi: 10.1016/j.cub.2004.07.053 |
[48] |
Storlazzi A, Tessé S, Gargano S, James F, Kleckner N, Zickler D . Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodeling, and reductional division. Genes Dev, 2003,17(21):2675-2687.
doi: 10.1101/gad.275203 pmid: 14563680 |
[49] |
Watrin E, Schleiffer A, Tanaka K, Eisenhaber F, Nasmyth K, Peters JM . Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression. Curr Biol, 2006,16(9):863-874.
doi: 10.1016/j.cub.2006.03.049 |
[50] |
Onn I, Heidinger-Pauli JM, Guacci V, Unal E, Koshland DE . Sister chromatid cohesion: a simple concept with a complex reality. Annu Rev Cell Dev Biol, 2008,24:105-129.
doi: 10.1146/annurev.cellbio.24.110707.175350 pmid: 18616427 |
[51] |
Hinshaw SM, Makrantoni V, Kerr A, Marston AL, Harrison SC . Structural evidence for Scc4-dependent localization of cohesin loading. eLife, 2015,4:e06057.
doi: 10.7554/eLife.06057 pmid: 26038942 |
[52] |
Hinshaw SM, Makrantoni V, Harrison SC, Marston AL. The kinetochore receptor for the cohesin loading complex. Cell, 2017, 171(1): 72-84.e13.
doi: 10.1016/j.cell.2017.08.017 pmid: 28938124 |
[53] |
D'Ambrosio C, Schmidt CK, Katou Y, Kelly G, Itoh T, Shirahige K, Uhlmann F . Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev, 2008,22(16):2215-2227.
doi: 10.1101/gad.1675708 pmid: 18708580 |
[54] |
Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, Fonseca NA, Huber W, Haering CH, Mirny L, Spitz F . Two independent modes of chromatin organization revealed by cohesin removal. Nature, 2017,551(7678):51-56.
doi: 10.1038/nature24281 pmid: 29094699 |
[55] |
Lengronne A, Katou Y, Mori S, Yokobayashi S, Kelly GP, Itoh T, Watanabe Y, Shirahige K, Uhlmann F . Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature, 2004,430(6999):573-578.
doi: 10.1038/nature02742 pmid: 15229615 |
[56] |
Hu B, Itoh T, Mishra A, Katoh Y, Chan KL, Upcher W, Godlee C, Roig MB, Shirahige K, Nasmyth K . ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex. Curr Biol, 2011,21(1):12-24.
doi: 10.1016/j.cub.2010.12.004 |
[57] |
Fernius J, Nerusheva OO, Galander S, Alves Fde L, Rappsilber J, Marston AL . Cohesin-dependent association of scc2/4 with the centromere initiates pericentromeric cohesion establishment. Curr Biol, 2013,23(7):599-606.
doi: 10.1016/j.cub.2013.02.022 |
[58] |
Rhodes J, Mazza D, Nasmyth K, Uphoff S . Scc2/Nipbl hops between chromosomal cohesin rings after loading. eLife, 2017,6:e30000.
doi: 10.7554/eLife.30000 pmid: 28914604 |
[59] |
Arumugam P, Gruber S, Tanaka K, Haering CH, Mechtler K, Nasmyth K . ATP hydrolysis is required for cohesin's association with chromosomes. Curr Biol, 2003,13(22):1941-1953.
doi: 10.1016/j.cub.2003.10.036 |
[60] |
Gruber S, Arumugam P, Katou Y, Kuglitsch D, Helmhart W, Shirahige K, Nasmyth K . Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. Cell, 2006,127(3):523-537.
doi: 10.1016/j.cell.2006.08.048 pmid: 17081975 |
[61] |
Seitan VC, Banks P, Laval S, Majid NA, Dorsett D, Rana A, Smith J, Bateman A, Krpic S, Hostert A, Rollins RA, Erdjument-Bromage H, Tempst P, Benard CY, Hekimi S, Newbury SF, Strachan T . Metazoan Scc4 homologs link sister chromatid cohesion to cell and axon migration guidance. PLoS Biol, 2006,4(8):e242.
doi: 10.1371/journal.pbio.0040242 pmid: 16802858 |
[62] |
Sebastian J, Ravi M, Andreuzza S, Panoli AP, Marimuthu MP, Siddiqi I . The plant adherin AtSCC2 is required for embryogenesis and sister-chromatid cohesion during meiosis in Arabidopsis. Plant J, 2009,59(1):1-13.
doi: 10.1111/j.1365-313X.2009.03845.x pmid: 19228337 |
[63] |
Shi ZH, Li ZQ, Zhang GF . The mechanism of histone lysine methylation of plant involved in gene expression and regulation. Hereditas(Beijing), 2014,36(3):208-219.
doi: 10.3724/SP.J.1005.2014.0208 |
施子晗, 李泽琴, 张根发 . 植物组蛋白赖氨酸化修饰参与基因表达调控的机理. 遗传, 2014,36(3):208-219.
doi: 10.3724/SP.J.1005.2014.0208 |
|
[64] |
Minina EA, Reza SH, Gutierrez-Beltran E, Elander PH, Bozhkov PV, Moschou PN . The Arabidopsis homolog of Scc4/MAU2 is essential for embryogenesis. J Cell Sci, 2017,130(6):1051-1063.
doi: 10.1242/jcs.196865 pmid: 28137757 |
[65] |
He YH, Wang JG, Qi WW, Song RT . Maize Dek15 encodes the cohesin-loading complex subunit SCC4 and is essential for chromosome segregation and kernel development. Plant Cell, 2019,31(2):465-485.
doi: 10.1105/tpc.18.00921 pmid: 30705131 |
[66] |
Rolef Ben-Shahar T, Heeger S, Lehane C, East P, Flynn H, Skehel M, Uhlmann F . Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science, 2008,321(5888):563-566.
doi: 10.1126/science.1157774 pmid: 18653893 |
[67] |
Unal E, Heidinger-Pauli JM, Kim W, Guacci V, Onn I, Gygi SP, Koshland DE . A molecular determinant for the establishment of sister chromatid cohesion. Science, 2008,321(5888):566-569.
doi: 10.1126/science.1157880 pmid: 18653894 |
[68] |
Rowland BD, Roig MB, Nishino T, Kurze A, Uluocak P, Mishra A, Beckouët F, Underwood P, Metson J, Imre R, Mechtler K, Katis VL, Nasmyth K . Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity. Mol Cell, 2009,33(6):763-774.
doi: 10.1016/j.molcel.2009.02.028 pmid: 19328069 |
[69] |
Zhang JL, Shi XM, Li YH, Kim BJ, Jia JL, Huang ZW, Yang T, Fu XY, Jung SY, Wang Y, Zhang PM, Kim ST, Pan XW, Qin J . Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol Cell, 2008,31(1):143-151.
doi: 10.1016/j.molcel.2008.06.006 pmid: 18614053 |
[70] |
Hou FJ, Zou H . Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion. Mol Biol Cell, 2005,16(8):3908-3918.
doi: 10.1091/mbc.e04-12-1063 pmid: 15958495 |
[71] |
Skibbens RV, Corson LB, Koshland D, Hieter P . Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev, 1999,13(3):307-319.
doi: 10.1101/gad.13.3.307 pmid: 9990855 |
[72] |
Milutinovich M, Unal E, Ward C, Skibbens RV, Koshland D . A multi-step pathway for the establishment of sister chromatid cohesion. PLoS Genet, 2007,3(1):e12.
doi: 10.1371/journal.pgen.0030012 pmid: 17238288 |
[73] |
Kenna MA, Skibbens RV . Mechanical link between cohesion establishment and DNA replication: Ctf7p/Eco1p, a cohesion establishment factor, associates with three different replication factor C complexes. Mol Cell Biol, 2003,23(8):2999-3007.
doi: 10.1128/mcb.23.8.2999-3007.2003 pmid: 12665596 |
[74] |
Lengronne A, McIntyre J, Katou Y, Kanoh Y, Hopfner KP, Shirahige K, Uhlmann F,. Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol Cell, 2006,23(6):787-799.
doi: 10.1016/j.molcel.2006.08.018 pmid: 16962805 |
[75] |
Schmitz J, Watrin E, Lénárt P, Mechtler K, Peters JM . Sororin is required for stable binding of cohesin to chromatin and for sister chromatid cohesion in interphase. Curr Biol, 2007,17(7):630-636.
doi: 10.1016/j.cub.2007.02.029 |
[76] |
Feytout A, Vaur S, Genier S, Vazquez S, Javerzat JP . Psm3 acetylation on conserved lysine residues is dispensable for viability in fission yeast but contributes to Eso1-mediated sister chromatid cohesion by antagonizing Wpl1. Mol Cell Biol, 2011,31(8):1771-1786.
doi: 10.1128/MCB.01284-10 |
[77] |
Nishiyama T, Ladurner R, Schmitz J, Kreidl E, Schleiffer A, Bhaskara V, Bando M, Shirahige K, Hyman AA, Mechtler K, Peters JM . Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell, 2010,143(5):737-749.
doi: 10.1016/j.cell.2010.10.031 pmid: 21111234 |
[78] |
Vaur S, Feytout A, Vazquez S, Javerzat JP . Pds5 promotes cohesin acetylation and stable cohesin-chromosome interaction. Embo Rep, 2012,13(7):645-652.
doi: 10.1038/embor.2012.72 |
[79] |
Kueng S, Hegemann B, Peters BH, Lipp JJ, Schleiffer A, Mechtler K, Peters JM . Wapl controls the dynamic association of cohesin with chromatin. Cell, 2006,127(5):955-967.
doi: 10.1016/j.cell.2006.09.040 pmid: 17113138 |
[80] |
Sutani T, Kawaguchi T, Kanno R, Itoh T, Shirahige K . Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction. Curr Biol, 2009,19(6):492-497.
doi: 10.1016/j.cub.2009.01.062 |
[81] |
Chan KL, Roig MB, Hu B, Beckouët F, Metson J, Nasmyth K . Cohesin's DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell, 2012,150(5):961-974.
doi: 10.1016/j.cell.2012.07.028 |
[82] |
Jiang L, Yuan L, Xia M, Makaroff CA . Proper levels of the Arabidopsis cohesion establishment factor CTF7 are essential for embryo and megagametophyte, but not endosperm, development. Plant Physiol, 2010,154(2):820-832.
doi: 10.1104/pp.110.157560 pmid: 20671110 |
[83] |
Bolaños-Villegas P, Yang XH, Wang HJ, Juan CT, Chuang MH, Makaroff CA, Jauh GY . Arabidopsis CHROMOSOME TRANSMISSION FIDELITY 7 (AtCTF7/ECO1) is required for DNA repair, mitosis and meiosis. Plant J, 2013,75(6):927-940.
doi: 10.1111/tpj.12261 |
[84] |
Singh DK, Andreuzza S, Panoli AP, Siddiqi I . AtCTF7 is required for establishment of sister chromatid cohesion and association of cohesin with chromatin during meiosis in Arabidopsis. Bmc Plant Biol, 2013,13:117.
doi: 10.1186/1471-2229-13-117 pmid: 23941555 |
[85] |
Liu DS, Makaroff CA . Overexpression of a truncated CTF7 construct leads to pleiotropic defects in reproduction and vegetative growth in Arabidopsis. Bmc Plant Biol, 2015,15:74.
doi: 10.1186/s12870-015-0452-2 pmid: 25848842 |
[86] |
Hauf S, Roitinger E, Koch B, Dittrich CM, Mechtler K, Peters JM . Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol, 2005,3(3):e69.
doi: 10.1371/journal.pbio.0030069 pmid: 15737063 |
[87] |
Ouyang ZQ, Zheng G, Song JH, Borek DM, Otwinowski Z, Brautigam CA, Tomchick DR, Rankin S, Yu HT . Structure of the human cohesin inhibitor Wapl. Proc Natl Acad Sci USA, 2013,110(28):11355-11360.
doi: 10.1073/pnas.1304594110 pmid: 23776203 |
[88] |
Gandhi R, Gillespie PJ, Hirano T . Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr Biol, 2006,16(24):2406-2417.
doi: 10.1016/j.cub.2006.10.061 |
[89] |
Pradillo M, Knoll A, Oliver C, Varas J, Corredor E, Puchta H, Santos JL . Involvement of the cohesin cofactor PDS5 (SPO76) during meiosis and DNA repair in Arabidopsis thaliana. Front Plant Sci, 2015,6:1034.
doi: 10.3389/fpls.2015.01034 pmid: 26648949 |
[90] |
De K, Sterle L, Krueger L, Yang X, Makaroff CA . Arabidopsis thaliana WAPL is essential for the prophase removal of cohesin during meiosis. PLoS Genet, 2014,10(7):e1004497.
doi: 10.1371/journal.pgen.1004497 pmid: 25033056 |
[91] |
De K, Bolaños-Villegas P, Mitra S, Yang X, Homan G, Jauh GY, Makaroff CA . The opposing actions of arabidopsis CHROMOSOME TRANSMISSION FIDELITY7 and WINGS APART-LIKE1 and 2 differ in mitotic and meiotic cells. Plant Cell, 2016,28(2):521-536.
doi: 10.1105/tpc.15.00781 pmid: 26813623 |
[92] |
Birkenbihl RP, Subramani S . Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Res, 1992,20(24):6605-6611.
doi: 10.1093/nar/20.24.6605 pmid: 1480481 |
[93] |
Heo SJ, Tatebayashi K, Kato J, Ikeda H . The RHC21 gene of budding yeast, a homologue of the fission yeast rad21+ gene, is essential for chromosome segregation. Mol Gen Genet, 1998,257(2):149-156.
doi: 10.1007/s004380050634 pmid: 9491073 |
[94] |
Sonoda E, Matsusaka T, Morrison C, Vagnarelli P, Hoshi O, Ushiki T, Nojima K, Fukagawa T, Waizenegger IC, Peters JM, Earnshaw WC, Takeda S . Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev Cell, 2001,1(6):759-770.
doi: 10.1016/s1534-5807(01)00088-0 pmid: 11740938 |
[95] |
Shamu CE, Murray AW . Sister chromatid separation in frog egg extracts requires DNA topoisomerase II activity during anaphase. . Cell Biol, 1992,117(5):921-934.
doi: 10.1083/jcb.117.5.921 pmid: 1315785 |
[96] |
Wang LH, Schwarzbraun T, Speicher MR, Nigg EA . Persistence of DNA threads in human anaphase cells suggests late completion of sister chromatid decatenation. Chromosoma, 2008,117(2):123-135.
doi: 10.1007/s00412-007-0131-7 |
[97] |
Oliveira RA, Hamilton RS, Pauli A, Davis I, Nasmyth K . Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat Cell Biol, 2010,12(2):185-192.
doi: 10.1038/ncb2018 pmid: 20081838 |
[98] |
Toyoda Y, Yanagida M . Coordinated requirements of human topo II and cohesin for metaphase centromere alignment under Mad2-dependent spindle checkpoint surveillance. Mol Biol Cell, 2006,17(5):2287-2302.
doi: 10.1091/mbc.e05-11-1089 pmid: 16510521 |
[99] | Zhao JP, Wang B . Genetic and biochemical control mechanism regulating entry into and exit from mitosis in eucaryotes. Hereditas(Beijing), 1994,16(4):40-45. |
赵吉平, 王斌 . 真核生物细胞有丝分裂起始、终止的遗传与生化调控机制. 遗传, 1994,16(4):40-45. | |
[100] |
Alomer RM, da Silva EML, Chen J, Piekarz KM, McDonald K, Sansam CG, Sansam CL, Rankin S . Esco1 and Esco2 regulate distinct cohesin functions during cell cycle progression. Proc Natl Acad Sci USA, 2017,114(37):9906-9911.
doi: 10.1073/pnas.1708291114 pmid: 28847955 |
[101] |
Carretero M, Ruiz-Torres M, Rodríguez-Corsino M, Barthelemy I, Losada A . Pds5B is required for cohesion establishment and Aurora B accumulation at centromeres. Embo J, 2013,32(22):2938-2949.
doi: 10.1038/emboj.2013.230 pmid: 24141881 |
[102] |
Rhodes JDP, Haarhuis JHI, Grimm JB, Rowland BD, Lavis LD, Nasmyth KA . Cohesin can remain associated with chromosomes during DNA replication. Cell Rep, 2017,20(12):2749-2755.
doi: 10.1016/j.celrep.2017.08.092 pmid: 28930671 |
[103] |
Nishiyama T, Sykora MM, Huis in't Veld PJ, Mechtler K, Peters JM,. Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating Sororin. Proc Natl Acad Sci USA, 2013,110(33):13404-13409.
doi: 10.1073/pnas.1305020110 pmid: 23901111 |
[104] |
Liu H, Rankin S, Yu HT . Phosphorylation-enabled binding of SGO1-PP2A to cohesin protects sororin and centromeric cohesion during mitosis. Nat Cell Biol, 2013,15(1):40-49.
doi: 10.1038/ncb2637 pmid: 23242214 |
[105] |
Wolf PG, Cuba Ramos AC, Kenzel J, Neumann B, Stemmann O, . Studying meiotic cohesin in somatic cells reveals that Rec8-containing cohesin requires Stag3 to function and is regulated by Wapland sororin. . Cell Sci, 2018, 131(11): pii:jcs212100.
doi: 10.1242/jcs.212100 pmid: 29724914 |
[106] |
Tanaka T, Fuchs J, Loidl J, Nasmyth K . Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat Cell Biol, 2000,2(8):492-499.
doi: 10.1038/35019529 pmid: 10934469 |
[107] |
Revenkova E, Eijpe M, Heyting C, Gross B, Jessberger R . Novel meiosis-specific isoform of mammalian SMC1. Mol Cell Biol, 2001,21(20):6984-6998.
doi: 10.1128/MCB.21.20.6984-6998.2001 pmid: 11564881 |
[108] |
Revenkova E, Eijpe M, Heyting C, Hodges CA, Hunt PA, Liebe B, Scherthan H, Jessberger R . Cohesin SMC1βis required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat Cell Biol, 2004,6(6):555-562.
doi: 10.1038/ncb1135 pmid: 15146193 |
[109] |
Bayés M, Prieto I, Noguchi J, Barbero JL, Pérez Jurado LA . Evaluation of the Stag3 gene and the synaptonemal complex in a rat model (as/as) for male infertility. Mol Reprod Dev, 2001,60(3):414-417.
doi: 10.1002/mrd.1104 pmid: 11599053 |
[110] |
Fukuda T, Hoog C . The mouse cohesin-associated protein PDS5B is expressed in testicular cells and is associated with the meiotic chromosome axes. Genes (Basel), 2010,1(3):484-494.
doi: 10.3390/genes1030484 pmid: 24710098 |
[111] |
Gómez R, Felipe-Medina N, Ruiz-Torres M, Berenguer I, Viera A, Pérez S, Barbero JL, Llano E, Fukuda T, Alsheimer M, Pendás AM, Losada A, Suja JA . Sororin loads to the synaptonemal complex central region independently of meiotic cohesin complexes. Embo Rep, 2016,17(5):695-707.
doi: 10.15252/embr.201541060 pmid: 26951638 |
[112] |
Jordan PW, Eyster C, Chen JR, Pezza RJ, Rankin S . Sororin is enriched at the central region of synapsed meiotic chromosomes. Chromosome Res, 2017,25(2):115-128.
doi: 10.1007/s10577-016-9542-8 pmid: 28050734 |
[113] |
Ishiguro K, Kim J, Shibuya H, Hernández-Hernández A, Suzuki A, Fukagawa T, Shioi G, Kiyonari H, Li XC, Schimenti J, Höög C, Watanabe Y . Meiosis-specific cohesin mediates homolog recognition in mouse spermatocytes. Gene Dev, 2014,28(6):594-607.
doi: 10.1101/gad.237313.113 |
[114] |
Ishiguro K, Kim J, Fujiyama-Nakamura S, Kato S, Watanabe Y . A new meiosis-specific cohesin complex implicated in the cohesin code for homologous pairing. Embo Rep, 2011,12(3):267-275.
doi: 10.1038/embor.2011.2 |
[115] |
Lee J, Hirano T . RAD21L, a novel cohesin subunit implicated in linking homologous chromosomes in mammalian meiosis. . Cell Biol, 2011,192(2):263-276.
doi: 10.1083/jcb.201008005 pmid: 21242291 |
[116] |
Brieño-Enríquez MA, Moak SL, Toledo M, Filter JJ, Gray S, Barbero JL, Cohen PE, Holloway JK . Cohesin removal along the chromosome arms during the first meiotic division depends on a NEK1-PP1γ-WAPL axis in the mouse. Cell Rep, 2016,17(4):977-986.
doi: 10.1016/j.celrep.2016.09.059 pmid: 27760328 |
[117] |
Llano E, Herrán Y, García-Tuñón I, Gutiérrez-Caballero C, de Álava E, Barbero JL, Schimenti J, de Rooij DG, Sánchez-Martín M, Pendás AM,. Meiotic cohesin complexes are essential for the formation of the axial element in mice. . Cell Biol, 2012,197(7):877-885.
doi: 10.1083/jcb.201201100 pmid: 22711701 |
[118] |
Panizza S, Mendoza MA, Berlinger M, Huang L, Nicolas A, Shirahige K, Klein F . Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination. Cell, 2011,146(3):372-383.
doi: 10.1016/j.cell.2011.07.003 |
[119] |
Lightfoot J, Testori S, Barroso C, Martinez-Perez E . Loading of meiotic cohesin by SCC-2 is required for early processing of DSBs and for the DNA damage checkpoint. Curr Biol, 2011,21(17):1421-1430.
doi: 10.1016/j.cub.2011.07.007 |
[120] |
Rollins RA, Morcillo P, Dorsett D . Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics, 1999,152(2):577-593.
pmid: 10353901 |
[121] |
Krantz ID, McCallum J, DeScipio C, Kaur M, Gillis LA, Yaeger D, Jukofsky L, Wasserman N, Bottani A, Morris CA, Nowaczyk MJ, Toriello H, Bamshad MJ, Carey JC, Rappaport E, Kawauchi S, Lander AD, Calof AL, Li HH, Devoto M, Jackson LG. Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat Genet, 2004,36(6):631-635.
doi: 10.1038/ng1364 pmid: 15146186 |
[122] |
Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T . NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet, 2004,36(6):636-641.
doi: 10.1038/ng1363 pmid: 15146185 |
[123] |
Zhu ZH, Wang XD . Roles of cohesin in chromosome architecture and gene expression. Semin Cell Dev Biol, 2019,90(4):187-193.
doi: 10.1016/j.molcel.2019.03.037 pmid: 31226277 |
[124] |
Symmons O, Uslu VV, Tsujimura T, Ruf S, Nassari S, Schwarzer W, Ettwiller L, Spitz F . Functional and topological characteristics of mammalian regulatory domains. Genome Res, 2014,24(3):390-400.
doi: 10.1101/gr.163519.113 |
[125] | 郭亚, 吴强 . 采用DNA片段编辑技术反转CTCF结合位点改变基因组拓扑结构和增强子与启动子功能. 遗传, 2015,37(10):1073-1074. |
[126] |
Rowley MJ, Corces VG . Organizational principles of 3D genome architecture. Nat Rev Genet, 2018,19(12):789-800.
doi: 10.1038/s41576-018-0060-8 pmid: 30367165 |
[127] |
Zuin J, Dixon JR, van der Reijden MI, Ye Z, Kolovos P, Brouwer RW, van de Corput MP, van de Werken HJ, Knoch TA, van IJcken WF, Grosveld FG, Ren B, Wendt KS,. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci USA, 2014,111(3):996-1001.
doi: 10.1073/pnas.1317788111 pmid: 24335803 |
[128] |
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B . Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 2012,485(7398):376-380.
doi: 10.1038/nature11082 |
[129] |
Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL . A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 2014,159(7):1665-1680.
doi: 10.1016/j.cell.2014.11.021 |
[130] |
Zheng H, Xie W . The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol, 2019,20(9):535-550.
doi: 10.1038/s41580-019-0132-4 pmid: 31197269 |
[131] |
Wang C, Liu C, Roqueiro D, Grimm D, Schwab R, Becker C, Lanz C, Weigel D . Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res, 2015,25(2):246-256.
doi: 10.1101/gr.170332.113 pmid: 25367294 |
[132] | Ning CY, He MN, Tang QZ, Zhu Q, Li MZ, Li DY . Advances in mammalian three-dimensional genome by using Hi-C technology approach. Hereditas(Beijing), 2019,41(3):215-233. |
宁椿游, 何梦楠, 唐茜子, 朱庆, 李明洲, 李地艳 . 基于Hi-C技术哺乳动物三维基因组研究进展. 遗传, 2019,41(3):215-233. | |
[133] |
Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, Jarmuz A, Canzonetta C, Webster Z, Nesterova T, Cobb BS, Yokomori K, Dillon N, Aragon L, Fisher AG, Merkenschlager M . Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell, 2008,132(3):422-433.
doi: 10.1016/j.cell.2008.01.011 pmid: 18237772 |
[134] |
Rubio ED, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN, Baliga NS, Aebersold R, Ranish JA, Krumm A . CTCF physically links cohesin to chromatin. Proc Natl Acad Sci USA, 2008,105(24):8309-8314.
doi: 10.1073/pnas.0801273105 pmid: 18550811 |
[135] |
Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM . Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J, 2008,27(4):654-666.
doi: 10.1038/emboj.2008.1 pmid: 18219272 |
[136] |
Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, Yahata K, Imamoto F, Aburatani H, Nakao M, Imamoto N, Maeshima K, Shirahige K, Peters JM . Cohesin mediates transcriptional insulation by CCCTC- binding factor. Nature, 2008,451(7180):796-801.
doi: 10.1038/nature06634 pmid: 18235444 |
[137] |
Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, Taatjes DJ, Dekker J, Young RA,. Mediator and cohesin connect gene expression and chromatin architecture. Nature, 2010,467(7314):430-435.
doi: 10.1038/nature09380 pmid: 20720539 |
[138] |
Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV, Ren B,. A map of the cis-regulatory sequences in the mouse genome. Nature, 2012,488(7409):116-120.
doi: 10.1038/nature11243 |
[139] |
Schmidt D, Schwalie PC, Ross-Innes CS, Hurtado A, Brown GD, Carroll JS, Flicek P, Odom DT . A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res, 2010,20(5):578-588.
doi: 10.1101/gr.100479.109 pmid: 20219941 |
[140] |
Uhlmann F . SMC complexes: from DNA to chromosomes. Nat Rev Mol Cell Biol, 2016,17(7):399-412.
doi: 10.1038/nrm.2016.30 pmid: 27075410 |
[141] |
Murayama Y, Samora CP, Kurokawa Y, Iwasaki H, Uhlmann F. Establishment of DNA-DNA interactions by the cohesin ring. Cell, 2018, 172(3): 465-477.e415.
doi: 10.1016/j.cell.2017.12.021 pmid: 29358048 |
[142] |
Sima J, Chakraborty A, Dileep V, Michalski M, Klein KN, Holcomb NP, Turner JL, Paulsen MT, Rivera-Mulia JC, Trevilla-Garcia C, Bartlett DA, Zhao PA, Washburn BK, Nora EP, Kraft K, Mundlos S, Bruneau BG, Ljungman M, Fraser P, Ay F, Gilbert DM, . Identifying cis elements for spatiotemporal control of mammalian DNA replication. Cell, 2019, 176(4): 816-830.e18.
doi: 10.1016/j.cell.2018.11.036 pmid: 30595451 |
[143] |
Villa-Hernández S, Bermejo R . Cohesin dynamic association to chromatin and interfacing with replication forks in genome integrity maintenance. Curr Genet, 2018,64(5):1005-1013.
doi: 10.1007/s00294-018-0824-x pmid: 29549581 |
[144] |
Busslinger GA, Stocsits RR, van der Lelij P, Axelsson E, Tedeschi A, Galjart N, Peters JM,. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature, 2017,544(7651):503-507.
doi: 10.1038/nature22063 pmid: 28424523 |
[145] |
Yuan L, Yang XH, Ellis JL, Fisher NM, Makaroff CA . The Arabidopsis SYN3 cohesin protein is important for early meiotic events. Plant J, 2012,71(1):147-160.
doi: 10.1111/j.1365-313X.2012.04979.x |
[1] | Dandan Wu, Mingkun Zhu, Zhongyan Fang, Wei Ma. Progress on molecular composition and genetic mechanism of plant B chromosomes [J]. Hereditas(Beijing), 2022, 44(9): 772-782. |
[2] | Yuan Zhang, Yuting Zhao, Lenan Zhuang, Jin He. Transcriptional regulation of transcriptional Mediator complexes in cardiovascular development and disease [J]. Hereditas(Beijing), 2022, 44(5): 383-397. |
[3] | Cuiling Wang, Xinyi Liu, Yahui Wang, Zheng Zhang, Zhidong Wang, Gangqiao Zhou. MCM2 promotes the proliferation, migration and invasion of cholangiocarcinoma cells by reducing the p53 signaling pathway [J]. Hereditas(Beijing), 2022, 44(3): 230-244. |
[4] | Guofang Liu, Peidong Ren, Wenxin Ye, Guangtao Lu. Analysis of transcriptional regulators HpaR1 and Clp regulating the expression of glycoside hydrolase-encoding gene in the Xanthomonas campestris pv. campestris [J]. Hereditas(Beijing), 2021, 43(9): 910-920. |
[5] | Cong Zhou, Qiangwei Zhou, Sheng Cheng, Guoliang Li. Research progress of CTCF in mediating 3D genome formation and regulating gene expression [J]. Hereditas(Beijing), 2021, 43(9): 816-821. |
[6] | Tianyi Wang, Yingxiang Wang, Chenjiang You. Structural and functional characteristics of plant PHD domain-containing proteins [J]. Hereditas(Beijing), 2021, 43(4): 323-339. |
[7] | Yuanyuan Hao, Xiangqian Zhao, Fudeng Huang, Chunshou Li. The role of PPR proteins in posttranscriptional regulation of organelle components in plants [J]. Hereditas(Beijing), 2021, 43(11): 1050-1065. |
[8] | Xiaofen Qiu, Dong’e Tang, Haiyan Yu, Qiuyan Liao, Zhiyang Hu, Jun Zhou, Xin Zhao, Huiyan He, Zhuojian Liang, Chengming Xu, Ming Yang, Yong Dai. Analysis of transcription factors in accessible open chromatin in the 18-trisomy syndrome based on single cell ATAC sequencing technique [J]. Hereditas(Beijing), 2021, 43(1): 74-83. |
[9] | Na Wang, Zhilian Jia, Qiang Wu. RFX5 regulates gene expression of the Pcdhα cluster [J]. Hereditas(Beijing), 2020, 42(8): 760-774. |
[10] | Xiaomeng Gao, Zhihua Zhang. Three-dimensional structure and function of chromatin regulated by “liquid-liquid phase separation” of biological macromolecules. [J]. Hereditas(Beijing), 2020, 42(1): 45-56. |
[11] | Xiaofei Zheng,Haiyan Huang,Qiang Wu. Chromatin architectural protein CTCF regulates gene expression of the UGT1 cluster [J]. Hereditas(Beijing), 2019, 41(6): 509-523. |
[12] | Chunyou Ning,Mengnan He,Qianzi Tang,Qing Zhu,Mingzhou Li,Diyan Li. Advances in mammalian three-dimensional genome by using Hi-C technology approach [J]. Hereditas(Beijing), 2019, 41(3): 215-233. |
[13] | Jiahui Chen, Xueyi Ren, min Li, Shiyi Lu, Tian Cheng, Liangtian Tan, Shaodong Liang, Danlin He, Qingbin Luo, Qinghua Nie, Xiquan Zhang, Wen Luo. The cell cycle pathway regulates chicken abdominal fat deposition as revealed by transcriptome sequencing [J]. Hereditas(Beijing), 2019, 41(10): 962-973. |
[14] | Lili Liu, Aiwei Guo, Peifu Wu, Fenfen Chen, Yajin Yang, Qin Zhang. Regulation of VPS28 gene knockdown on the milk fat synthesis in Chinese Holstein dairy [J]. Hereditas(Beijing), 2018, 40(12): 1092-1100. |
[15] | Min Cheng, Wenjian Zhang, Tianyu Xing, Xiaohong Yan, Yumao Li, Hui Li, Ning Wang. Functional analysis of the upstream regulatory region of chicken miR-17-92 cluster [J]. Hereditas(Beijing), 2016, 38(8): 724-735. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号