[1] | Kim YG, Cha J, Chandrasegaran S . Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA, 1996,93(3):1156-1160. | [2] | Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U . Breaking the code of DNA binding specificity of TAL-typeⅢeffectors. Science, 2009,326(5959):1509-1512. | [3] | Hsu PD, Lander ES, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157(6):1262-1278. | [4] | Xu S, Cao S, Zou B, Yue Y, Gu C, Chen X, Wang P, Dong X, Xiang Z, Li K, Zhu M, Zhao Q, Zhou G . An alternative novel tool for DNA editing without target sequence limitation: the structure-guided nuclease. Genome Biol, 2016,17(1):186. | [5] | Huang YQ, Li GL, Yang HQ, Wu ZF . Progress and application of genome-edited pigs in biomedical research. Hereditas(Beijing), 2018,40(8):632-646. | [5] | 黄耀强, 李国玲, 杨化强, 吴珍芳 . 基因编辑猪在生物医学研究中的应用. 遗传, 2018,40(8):632-646. | [6] | Difilippantonio MJ, Zhu J, Chen HT, Meffre E, Nussenzweig MC, Max EE, Ried T, Nussenzweig A . DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature, 2000,404(6777):510-514. | [7] | Capecchi MR . Altering the genome by homologous recombination. Science, 1989,244(4910):1288-1292. | [8] | Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis G . High- frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods, 2011,8(9):753-755. | [9] | Shen B, Zhang X, Du Y, Wang J, Gong J, Zhang X, Tate PH, Li H, Huang X, Zhang W . Efficient knockin mouse generation by ssDNA oligonucleotides and zinc-finger nuclease assisted homologous recombination in zygotes. PLoS One, 2013,8(10):e77696. | [10] | Hu Z, Shi Z, Guo X, Jiang B, Wang G, Luo D, Chen Y, Zhu YS . Ligase IV inhibitor SCR7 enhances gene editing directed by CRISPR-Cas9 and ssODN in human cancer cells. Cell Biosci, 2018,8(1):12. | [11] | Richardson CD, Kazane KR, Feng SJ, Zelin E, Bray NL, Schäfer AJ, Floor SN, Corn JE . CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat Genet, 2018,50(8):1132-1139. | [12] | Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL . Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol, 2015,33(5):538-542. | [13] | Ma X, Chen X, Jin Y, Ge W, Wang W, Kong L, Ji J, Guo X, Huang J, Feng XH, Fu J, Zhu S . Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells. Nat Commun, 2018,9(1):1303. |
|
[1] |
Zhong Bian, Dongping Cao, Wenshu Zhuang, Shuwei Zhang, Qiaoquan Liu, Lin Zhang.
Revelation of rice molecular design breeding: the blend of tradition and modernity
[J]. Hereditas(Beijing), 2023, 45(9): 718-740.
|
[2] |
Bingzheng Wang, Chao Zhang, Jiali Zhang, Jin Sun.
Conditional editing of the Drosophila melanogaster genome using single transcripts expressing Cas9 and sgRNA
[J]. Hereditas(Beijing), 2023, 45(7): 593-601.
|
[3] |
Xiaojun Zhang, Kun Xu, Juncen Shen, Lu Mu, Hongrun Qian, Jieyu Cui, Baoxia Ma, Zhilong Chen, Zhiying Zhang, Zehui Wei.
A CRISPR/Cas9-Gal4BD donor adapting system for enhancing homology-directed repair
[J]. Hereditas(Beijing), 2022, 44(8): 708-719.
|
[4] |
Yuting Han, Bowen Xu, Yutong Li, Xinyi Lu, Xizhi Dong, Yuhao Qiu, Qinyun Che, Ruibao Zhu, Li Zheng, Xiaochen Li, Xu Si, Jianquan Ni.
The cutting edge of gene regulation approaches in model organism Drosophila
[J]. Hereditas(Beijing), 2022, 44(1): 3-14.
|
[5] |
Dingwei Peng, Ruiqiang Li, Wu Zeng, Min Wang, Xuan Shi, Jianhua Zeng, Xiaohong Liu, Yaoshen Chen, Zuyong He.
Editing the cystine knot motif of MSTN enhances muscle development of Liang Guang Small Spotted pigs
[J]. Hereditas(Beijing), 2021, 43(3): 261-270.
|
[6] |
Guoling Li, Shanxin Yang, Zhenfang Wu, Xianwei Zhang.
Recent developments in enhancing the efficiency of CRISPR/Cas9- mediated knock-in in animals
[J]. Hereditas(Beijing), 2020, 42(7): 641-656.
|
[7] |
Yingnan Chen, Jing Lu.
Application of CRISPR/Cas9 mediated gene editing in trees
[J]. Hereditas(Beijing), 2020, 42(7): 657-668.
|
[8] |
Lianchao Tang, Feng Gu.
Next-generation CRISPR-Cas for genome editing: focusing on the Cas protein and PAM
[J]. Hereditas(Beijing), 2020, 42(3): 236-249.
|
[9] |
Junxia Cao, Youliang Wang, Zhengxu Wang.
Advances in precise regulation of CRISPR/Cas9 gene editing technology
[J]. Hereditas(Beijing), 2020, 42(12): 1168-1177.
|
[10] |
Qianqian Zhang,Xuan Shang,Wanying Lin,Xiangmin Xu.
Effect of genetic modifiers on the clinical severity of β-thalassemia
[J]. Hereditas(Beijing), 2019, 41(8): 669-676.
|
[11] |
Xuran Niu,Shuming Yin,Xi Chen,Tingting Shao,Dali Li.
Gene editing technology and its recent progress in disease therapy
[J]. Hereditas(Beijing), 2019, 41(7): 582-598.
|
[12] |
Yunxiao Ren, Rudan Xiao, Xiaomin Lou, Xiangdong Fang.
Research advance and application in the gene therapy of gene editing technologies
[J]. Hereditas(Beijing), 2019, 41(1): 18-27.
|
[13] |
Gaowei Xin, Xixun Hu, Kejian Wang, Xingchun Wang.
Cas9 protein variant VQR recognizes NGAC protospacer adjacent motif in rice
[J]. Hereditas(Beijing), 2018, 40(12): 1112-1119.
|
[14] |
Yiou Chen, Ying Bao, Huazheng Ma, Zongyi Yi, Zhuo Zhou, Wensheng Wei.
Gene editing technology and its research progress in China
[J]. Hereditas(Beijing), 2018, 40(10): 900-915.
|
[15] |
Li Ma, Hongyan Chen, Huaxing Zhu, Wei Li, Daru Lu.
Locked nucleic acid couples with FokⅠnucleases to target and cleave hepatitis B virus’s gene in vitro
[J]. HEREDITAS(Beijing), 2016, 38(4): 350-359.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|