Hereditas(Beijing) ›› 2024, Vol. 46 ›› Issue (12): 1028-1041.doi: 10.16288/j.yczz.24-200
• Review • Previous Articles Next Articles
Qi Li(), Zhicheng Dong, Min Liu(
)
Received:
2024-07-01
Revised:
2024-09-18
Online:
2024-12-20
Published:
2024-09-25
Contact:
Min Liu
E-mail:710545832@qq.com;minl@gzhu.edu.cn
Supported by:
Qi Li, Zhicheng Dong, Min Liu. The carboxy-terminal domain of RNA polymerase II large subunit: simple repeats are not simple[J]. Hereditas(Beijing), 2024, 46(12): 1028-1041.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Summary of known CTD phosphorylation enzymes in mammals, S. cerevisiae and Arabidopsis"
修饰位点 | 修饰酶 | 哺乳动物 | 酿酒酵母 | 拟南芥 |
---|---|---|---|---|
Tyr1 | 激酶 | c-Abl[ | Slt2[ | |
磷酸酶 | Rtr1、Glc7[ | |||
Ser2 | 激酶 | CDK9、CDK11、CDK12、CDK13、BRD4、DYRK1A[ | Bur1、Ctk1, Pho85, Cdc28[ | CDKC;1、CDKC;2、CDKD;1、CDKD;2、CDKD;3[ |
磷酸酶 | FCP1、CDC14[ | Fcp1、Cdc14[ | CPL1、CPL2、CPL4、CPL5、SSP4、SSP4B[ | |
Thr4 | 激酶 | CDK9、PLK3[ | Bur1、Pho85、Cdc28、Rim11、Cmk1、Cmk2、Sln1、Yck2、Hrr25、Yck3、Ssk2[ | |
磷酸酶 | FCP1[ | Fcp1[ | ||
Ser5 | 激酶 | CDK7、CDK8、CDK9、CDK12、CDK13、DYRK1A[ | Kin28、Bur1、Srb10、Ctk1、Cdc28、Pho85[ | CDKD;1、CDKD;2、CDKD;3[ |
磷酸酶 | SSU72、RPAP2、SCP1、SCP4、CDC14[ | Rtr1、Ssu72、Cdc14[ | CPL1、CPL2、CPL4、SSP4, SSP4B、SSP5[ | |
Ser7 | 激酶 | CDK7、CDK9[ | Kin28、Bur1、Ctk1[ | CDKF;1、CDKD;1、CDKD;2、CDKD;3[ |
磷酸酶 | SSU72[ | Ssu72[ |
[1] | Cobb M. 60 years ago, Francis Crick changed the logic of biology. PLoS Biol, 2017, 15(9): e2003243. |
[2] |
Allison LA, Moyle M, Shales M, Ingles CJ. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell, 1985, 42(2): 599-610.
doi: 10.1016/0092-8674(85)90117-5 pmid: 3896517 |
[3] | Xu MX, Zhou M. Advances of RNA polymerase IV in controlling DNA methylation and development in plants. Hereditas (Beijing), 2022, 44(7): 567-580. |
许梦萱, 周明. 植物RNA聚合酶Ⅳ调控DNA甲基化和发育的研究进展. 遗传, 2022, 44(7): 567-580. | |
[4] |
Bushnell DA, Kornberg RD. Complete, 12-subunit RNA polymerase II at 4.1-Å resolution: implications for the initiation of transcription. Proc Natl Acad Sci USA, 2003, 100(12): 6969-6973.
doi: 10.1073/pnas.1130601100 pmid: 12746498 |
[5] | Burton ZF. The Old and New Testaments of gene regulation. Evolution of multi-subunit RNA polymerases and co-evolution of eukaryote complexity with the RNAP II CTD. Transcription, 2014, 5(3): e28674. |
[6] | Eick D, Geyer M. The RNA polymerase II carboxy- terminal domain (CTD) code. Chem Rev, 2013, 113(11): 8456-8490. |
[7] |
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev, 2013, 113(11): 8423-8455.
doi: 10.1021/cr400158h pmid: 24040939 |
[8] | Lu HS, Yu D, Hansen AS, Ganguly S, Liu RD, Heckert A, Darzacq X, Zhou Q. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature, 2018, 558(7709): 318-323. |
[9] |
Shao W, Bi XJ, Pan YX, Gao BY, Wu J, Yin YF, Liu ZM, Peng MY, Zhang WH, Jiang X, Ren WL, Xu YH, Wu ZY, Wang KL, Zhan G, Lu JY, Han X, Li T, Wang JL, Li GH, Deng HT, Li B, Shen XH. Phase separation of RNA-binding protein promotes polymerase binding and transcription. Nat Chem Biol, 2022, 18(1): 70-80.
doi: 10.1038/s41589-021-00904-5 pmid: 34916619 |
[10] | Lushpinskaia IP, Flores-Solis D, Zweckstetter M. Structure and phase separation of the C-terminal domain of RNA polymerase II. Biol Chem, 2023, 404(8-9): 839-844. |
[11] |
Yang CL, Stiller JW. Evolutionary diversity and taxon-specific modifications of the RNA polymerase II C-terminal domain. Proc Natl Acad Sci USA, 2014, 111(16): 5920-5925.
doi: 10.1073/pnas.1323616111 pmid: 24711388 |
[12] |
Nonet ML, Young RA. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics, 1989, 123(4): 715-724.
doi: 10.1093/genetics/123.4.715 pmid: 2693207 |
[13] |
West ML, Corden JL. Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations. Genetics, 1995, 140(4): 1223-1233.
doi: 10.1093/genetics/140.4.1223 pmid: 7498765 |
[14] | Lu FY, Portz B, Gilmour DS. The C-terminal domain of RNA polymerase II is a multivalent targeting sequence that supports Drosophila development with only consensus heptads. Mol Cell, 2019, 73(6): 1232-1242.e4. |
[15] |
Boehning M, Dugast-Darzacq C, Rankovic M, Hansen AS, Yu T, Marie-Nelly H, Mcswiggen DT, Kokic G, Dailey GM, Cramer P, Darzacq X, Zweckstetter M. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat Struct Mol Biol, 2018, 25(9): 833-840.
doi: 10.1038/s41594-018-0112-y pmid: 30127355 |
[16] | Sawicka A, Villamil G, Lidschreiber M, Darzacq X, Dugast-Darzacq C, Schwalb B, Cramer P. Transcription activation depends on the length of the RNA polymerase II C-terminal domain. EMBO J, 2021, 40(9): e107015. |
[17] | Garg A, Sanchez AM, Schwer B, Shuman S. Transcriptional profiling of fission yeast RNA polymerase II CTD mutants. RNA, 2021, 27(5): 560-570. |
[18] | Purkayastha D, Karmodiya K. RNA Polymerase II evolution and adaptations: insights from Plasmodium and other parasitic protists. Infect Genet Evol, 2023, 115: 105505. |
[19] |
Chapman RD, Heidemann M, Hintermair C, Eick D. Molecular evolution of the RNA polymerase II CTD. Trends Genet, 2008, 24(6): 289-296.
doi: 10.1016/j.tig.2008.03.010 pmid: 18472177 |
[20] | Harlen KM, Churchman LS. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat Rev Mol Cell Biol, 2017, 18(4): 263-273. |
[21] | Han YB, Zhang FX. The role of the carboxy-terminal domain of the RNA polymerase II on coupling mRNA transcription with processing. Hereditas (Beijing), 2003, 25(1): 102-106. |
韩玉波, 张飞雄. RNA聚合酶II中的CTD结构在mRNA转录和加工偶联过程中的重要作用. 遗传, 2003, 25(1): 102-106. | |
[22] | Abe K, Schauer T, Torres-Padilla ME. Distinct patterns of RNA polymerase II and transcriptional elongation characterize mammalian genome activation. Cell Rep, 2022, 41(13): 111865. |
[23] | Zhang B, Yang GH, Chen Y, Zhao YH, Gao P, Liu B, Wang HY, Zheng ZL. C-terminal domain (CTD) phosphatase links Rho GTPase signaling to Pol II CTD phosphorylation in Arabidopsis and yeast. Proc Natl Acad Sci USA, 2016, 113(50): E8197-E8206. |
[24] | Yamazaki T, Liu LZ, Manley JL. Oxidative stress induces Ser 2 dephosphorylation of the RNA polymerase II CTD and premature transcription termination. Transcription, 2021, 12(5): 277-293. |
[25] |
Mayer A, Heidemann M, Lidschreiber M, Schreieck A, Sun M, Hintermair C, Kremmer E, Eick D, Cramer P. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science, 2012, 336(6089): 1723-1725.
doi: 10.1126/science.1219651 pmid: 22745433 |
[26] |
Yurko N, Liu XC, Yamazaki T, Hoque M, Tian B, Manley JL. MPK1/SLT2 links multiple stress responses with gene expression in budding yeast by phosphorylating Tyr1 of the RNAP II CTD. Mol Cell, 2017, 68(5): 913-925.e3.
doi: S1097-2765(17)30879-1 pmid: 29220656 |
[27] |
Hsu PL, Yang F, Smith-Kinnaman W, Yang W, Song JE, Mosley AL, Varani G. Rtr1 is a dual specificity phosphatase that dephosphorylates Tyr1 and Ser5 on the RNA polymerase II CTD. J Mol Biol, 2014, 426(16): 2970-2981.
doi: 10.1016/j.jmb.2014.06.010 pmid: 24951832 |
[28] |
Schreieck A, Easter AD, Etzold S, Wiederhold K, Lidschreiber M, Cramer P, Passmore LA. RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7. Nat Struct Mol Biol, 2014, 21(2): 175-179.
doi: 10.1038/nsmb.2753 pmid: 24413056 |
[29] |
Peterlin BM, Price DH. Controlling the elongation phase of transcription with P-TEFb. Mol Cell, 2006, 23(3): 297-305.
doi: 10.1016/j.molcel.2006.06.014 pmid: 16885020 |
[30] | Pak V, Eifler TT, Jäger S, Krogan NJ, Fujinaga K, Peterlin BM. CDK11 in TREX/THOC regulates HIV mRNA 3′ end processing. Cell Host Microbe, 2015, 18(5): 560-570. |
[31] |
Liang KW, Gao X, Gilmore JM, Florens L, Washburn MP, Smith E, Shilatifard A. Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing. Mol Cell Biol, 2015, 35(6): 928-938.
doi: 10.1128/MCB.01426-14 pmid: 25561469 |
[32] |
Devaiah BN, Lewis BA, Cherman N, Hewitt MC, Albrecht BK, Robey PG, Ozato K, Sims RJ 3rd, Singer DS. BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc Natl Acad Sci USA, 2012, 109(18): 6927-6932.
doi: 10.1073/pnas.1120422109 pmid: 22509028 |
[33] | Di Vona C, Bezdan D, Islam ABMMK, Salichs E, López-Bigas N, Ossowski S, de la Luna S. Chromatin- wide profiling of DYRK1A reveals a role as a gene-specific RNA polymerase II CTD kinase. Mol Cell, 2015, 57(3): 506-520. |
[34] |
Qiu HF, Hu CH, Hinnebusch AG. Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol Cell, 2009, 33(6): 752-762.
doi: 10.1016/j.molcel.2009.02.018 pmid: 19328068 |
[35] | Cho EJ, Kobor MS, Kim M, Greenblatt J, Buratowski S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev, 2001, 15(24): 3319-3329. |
[36] |
Nemec CM, Singh AK, Ali A, Tseng SC, Syal K, Ringelberg KJ, Ho YH, Hintermair C, Ahmad MF, Kar RK, Gasch AP, Akhtar MS, Eick D, Ansari AZ. Noncanonical CTD kinases regulate RNA polymerase II in a gene-class-specific manner. Nat Chem Biol, 2019, 15(2): 123-131.
doi: 10.1038/s41589-018-0194-1 pmid: 30598543 |
[37] | Hajheidari M, Farrona S, Huettel B, Koncz Z, Koncz C. CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA polymerase II. Plant Cell, 2012, 24(4): 1626-1642. |
[38] | Cho H, Kim TK, Mancebo H, Lane WS, Flores O, Reinberg D. A protein phosphatase functions to recycle RNA polymerase II. Genes Dev, 1999, 13(12): 1540-1552. |
[39] |
Clemente-Blanco A, Sen N, Mayan-Santos M, Sacristán MP, Graham B, Jarmuz A, Giess A, Webb E, Game L, Eick D, Bueno A, Merkenschlager M, Aragón L. Cdc14 phosphatase promotes segregation of telomeres through repression of RNA polymerase II transcription. Nat Cell Biol, 2011, 13(12): 1450-1456.
doi: 10.1038/ncb2365 pmid: 22020438 |
[40] | Zheng ZL. Cyclin-dependent kinases and CTD phosphatases in cell cycle transcriptional control: conservation across eukaryotic kingdoms and uniqueness to plants. Cells, 2022, 11(2): 279. |
[41] | Jin YM, Jung J, Jeon H, Won SY, Feng Y, Kang JS, Lee SY, Cheong JJ, Koiwa H, Kim M. AtCPL5, a novel Ser-2-specific RNA polymerase II C-terminal domain phosphatase, positively regulates ABA and drought responses in Arabidopsis. New Phytol, 2011, 190(1): 57-74. |
[42] | Feng Y, Kang JS, Kim S, Yun DJ, Lee SY, Bahk JD, Koiwa H. Arabidopsis SCP1-like small phosphatases differentially dephosphorylate RNA polymerase II C-terminal domain. Biochem Biophys Res Commun, 2010, 397(2): 355-360. |
[43] | Hsin JP, Sheth A, Manley JL. RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3' end processing. Science, 2011, 334(6056): 683-686. |
[44] |
Hintermair C, Heidemann M, Koch F, Descostes N, Gut M, Gut I, Fenouil R, Ferrier P, Flatley A, Kremmer E, Chapman RD, Andrau JC, Eick D. Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation. EMBO J, 2012, 31(12): 2784-2797.
doi: 10.1038/emboj.2012.123 pmid: 22549466 |
[45] | Hsin JP, Xiang KH, Manley JL. Function and control of RNA polymerase II C-terminal domain phosphorylation in vertebrate transcription and RNA processing. Mol Cell Biol, 2014, 34(13): 2488-2498. |
[46] |
Suh H, Ficarro SB, Kang UB, Chun YJ, Marto JA, Buratowski S. Direct analysis of phosphorylation sites on the Rpb1 C-terminal domain of RNA polymerase II. Mol Cell, 2016, 61(2): 297-304.
doi: 10.1016/j.molcel.2015.12.021 pmid: 26799764 |
[47] |
Boeing S, Rigault C, Heidemann M, Eick D, Meisterernst M. RNA polymerase II C-terminal heptarepeat domain Ser-7 phosphorylation is established in a mediator-dependent fashion. J Biol Chem, 2010, 285(1): 188-196.
doi: 10.1074/jbc.M109.046565 pmid: 19901026 |
[48] |
Galbraith MD, Donner AJ, Espinosa JM. CDK8: a positive regulator of transcription. Transcription, 2010, 1(1): 4-12.
doi: 10.4161/trns.1.1.12373 pmid: 21327159 |
[49] | Ghamari A, Van de Corput MPC, Thongjuea S, Van Cappellen WA, Van Ijcken W, Van Haren J, Soler E, Eick D, Lenhard B, Grosveld FG. In vivo live imaging of RNA polymerase II transcription factories in primary cells. Genes Dev, 2013, 27(7): 767-777. |
[50] | Komarnitsky P, Cho EJ, Buratowski S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev, 2000, 14(19): 2452-2460. |
[51] |
Bataille AR, Jeronimo C, Jacques PÉ, Laramée L, Fortin MÈ, Forest A, Bergeron M, Hanes SD, Robert F. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol Cell, 2012, 45(2): 158-170.
doi: 10.1016/j.molcel.2011.11.024 pmid: 22284676 |
[52] |
Chymkowitch P, Eldholm V, Lorenz S, Zimmermann C, Lindvall JM, Bjørås M, Meza-Zepeda LA, Enserink JM. Cdc28 kinase activity regulates the basal transcription machinery at a subset of genes. Proc Natl Acad Sci USA, 2012, 109(26): 10450-10455.
doi: 10.1073/pnas.1200067109 pmid: 22689984 |
[53] |
Hengartner CJ, Myer VE, Liao SM, Wilson CJ, Koh SS, Young RA. Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol Cell, 1998, 2(1): 43-53.
doi: 10.1016/s1097-2765(00)80112-4 pmid: 9702190 |
[54] |
Egloff S, Zaborowska J, Laitem C, Kiss T, Murphy S. Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes. Mol Cell, 2012, 45(1): 111-122.
doi: 10.1016/j.molcel.2011.11.006 pmid: 22137580 |
[55] |
Yeo M, Lin PS, Dahmus ME, Gill GN. A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J Biol Chem, 2003, 278(28): 26078-26085.
doi: 10.1074/jbc.M301791200 pmid: 12721286 |
[56] |
Wani S, Sugita A, Ohkuma Y, Hirose Y. Human SCP4 is a chromatin-associated CTD phosphatase and exhibits the dynamic translocation during erythroid differentiation. J Biochem, 2016, 160(2): 111-120.
doi: 10.1093/jb/mvw018 pmid: 26920047 |
[57] |
Mosley AL, Pattenden SG, Carey M, Venkatesh S, Gilmore JM, Florens L, Workman JL, Washburn MP. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from Serine 5 to Serine 2 phosphorylation. Mol Cell, 2009, 34(2): 168-178.
doi: 10.1016/j.molcel.2009.02.025 pmid: 19394294 |
[58] |
Krishnamurthy S, He XY, Reyes-Reyes M, Moore C, Hampsey M. Ssu72 is an RNA polymerase II CTD phosphatase. Mol Cell, 2004, 14(3): 387-394.
pmid: 15125841 |
[59] |
Akhtar MS, Heidemann M, Tietjen JR, Zhang DW, Chapman RD, Eick D, Ansari AZ. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol Cell, 2009, 34(3): 387-393.
doi: 10.1016/j.molcel.2009.04.016 pmid: 19450536 |
[60] |
Czudnochowski N, Bösken CA, Geyer M. Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition. Nat Commun, 2012, 3: 842.
doi: 10.1038/ncomms1846 pmid: 22588304 |
[61] |
Tietjen JR, Zhang DW, Rodriguez-Molina JB, White BE, Akhtar MS, Heidemann M, Li X, Chapman RD, Shokat K, Keles S, Eick D, Ansari AZ. Chemical-genomic dissection of the CTD code. Nat Struct Mol Biol, 2010, 17(9): 1154-1161.
doi: 10.1038/nsmb.1900 pmid: 20802488 |
[62] |
Zhang DW, Mosley AL, Ramisetty SR, Rodríguez- Molina JB, Washburn MP, Ansari AZ. Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination. J Biol Chem, 2012, 287(11): 8541-8551.
doi: 10.1074/jbc.M111.335687 pmid: 22235117 |
[63] |
Robinson PJ, Trnka MJ, Bushnell DA, Davis RE, Mattei PJ, Burlingame AL, Kornberg RD. Structure of a complete mediator-RNA polymerase II pre-initiation complex. Cell, 2016, 166(6): 1411-1422.e16.
doi: S0092-8674(16)31147-3 pmid: 27610567 |
[64] | Archuleta SR, Goodrich JA, Kugel JF. Mechanisms and functions of the RNA polymerase II general transcription machinery during the transcription cycle. Biomolecules, 2024, 14(2): 176. |
[65] | Core L, Adelman K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev, 2019, 33(15-16): 960-982. |
[66] |
Levine M. Paused RNA polymerase II as a developmental checkpoint. Cell, 2011, 145(4): 502-511.
doi: 10.1016/j.cell.2011.04.021 pmid: 21565610 |
[67] |
Zimmer JT, Rosa-Mercado NA, Canzio D, Steitz JA, Simon MD. STL-seq reveals pause-release and termination kinetics for promoter-proximal paused RNA polymerase II transcripts. Mol Cell, 2021, 81(21): 4398-4412.e7.
doi: 10.1016/j.molcel.2021.08.019 pmid: 34520723 |
[68] |
Wood A, Shilatifard A. Bur1/Bur2 and the Ctk complex in yeast: the split personality of mammalian P-TEFb. Cell Cycle, 2006, 5(10): 1066-1068.
pmid: 16721054 |
[69] |
Søgaard TM, Svejstrup JQ. Hyperphosphorylation of the C-terminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator. J Biol Chem, 2007, 282(19): 14113-14120.
doi: 10.1074/jbc.M701345200 pmid: 17376774 |
[70] |
Takahashi H, Parmely TJ, Sato S, Tomomori-Sato C, Banks CAS, Kong SE, Szutorisz H, Swanson SK, Martin-Brown S, Washburn MP, Florens L, Seidel CW, Lin CQ, Smith ER, Shilatifard A, Conaway RC, Conaway JW. Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell, 2011, 146(1): 92-104.
doi: 10.1016/j.cell.2011.06.005 pmid: 21729782 |
[71] | Zhu JF, Liu M, Liu XB, Dong ZC. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis. Nat Plants, 2018, 4(12): 1112-1123. |
[72] |
Hetzel J, Duttke SH, Benner C, Chory J. Nascent RNA sequencing reveals distinct features in plant transcription. Proc Natl Acad Sci USA, 2016, 113(43): 12316-12321.
pmid: 27729530 |
[73] | Booth GT, Parua PK, Sansó M, Fisher RP, Lis JT. Cdk9 regulates a promoter-proximal checkpoint to modulate RNA polymerase II elongation rate in fission yeast. Nat Commun, 2018, 9(1): 543. |
[74] |
Booth GT, Wang IX, Cheung VG, Lis JT. Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast. Genome Res, 2016, 26(6): 799-811.
doi: 10.1101/gr.204578.116 pmid: 27197211 |
[75] | Liu M, Zhu JF, Dong ZC. Immediate transcriptional responses of Arabidopsis leaves to heat shock. J Integr Plant Biol, 2021, 63(3): 468-483. |
[76] | Badjatia N, Rossi MJ, Bataille AR, Mittal C, Lai WKM, Pugh BF. Acute stress drives global repression through two independent RNA polymerase II stalling events in Saccharomyces. Cell Rep, 2021, 34(3): 108640. |
[77] | Chivu AG, Abuhashem A, Barshad G, Rice EJ, Leger MM, Vill AC, Wong W, Brady R, Smith JJ, Wikramanayake AH, Arenas-Mena C, Brito IL, Ruiz-Trillo I, Hadjantonakis AK, Lis JT, Lewis JJ, Danko CG. Evolution of promoter-proximal pausing enabled a new layer of transcription control. Res Sq, 2023, 24: rs.3.rs-2679520. |
[78] |
Jiao XF, Chang JH, Kilic T, Tong L, Kiledjian M. A mammalian pre-mRNA 5' end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing. Mol Cell, 2013, 50(1): 104-115.
doi: 10.1016/j.molcel.2013.02.017 pmid: 23523372 |
[79] |
Moteki S, Price D. Functional coupling of capping and transcription of mRNA. Mol Cell, 2002, 10(3): 599-609.
pmid: 12408827 |
[80] |
Li Y, Wang QM, Xu YH, Li Z. Structures of co-transcriptional RNA capping enzymes on paused transcription complex. Nat Commun, 2024, 15(1): 4622.
doi: 10.1038/s41467-024-48963-1 pmid: 38816438 |
[81] |
Ho CK, Shuman S. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol Cell, 1999, 3(3): 405-411.
pmid: 10198643 |
[82] |
Bage MG, Almohammed R, Cowling VH, Pisliakov AV. A novel RNA pol II CTD interaction site on the mRNA capping enzyme is essential for its allosteric activation. Nucleic Acids Res, 2021, 49(6): 3109-3126.
doi: 10.1093/nar/gkab130 pmid: 33684220 |
[83] | Obermeyer S, Kapoor H, Markusch H, Grasser KD. Transcript elongation by RNA polymerase II in plants: factors, regulation and impact on gene expression. Plant J, 2024, 118(3): 645-656. |
[84] |
Mo WP, Liu B, Zhang H, Jin XH, Lu DD, Yu YM, Liu YL, Jia JB, Long YP, Deng X, Cao XF, Guo HW, Zhai JX. Landscape of transcription termination in Arabidopsis revealed by single-molecule nascent RNA sequencing. Genome Biol, 2021, 22(1): 322.
doi: 10.1186/s13059-021-02543-4 pmid: 34823554 |
[85] |
Core LJ, Waterfall JJ, Lis JT. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science, 2008, 322(5909): 1845-1848.
doi: 10.1126/science.1162228 pmid: 19056941 |
[86] | Materne P, Anandhakumar J, Migeot V, Soriano I, Yague-Sanz C, Hidalgo E, Mignion C, Quintales L, Antequera F, Hermand D. Promoter nucleosome dynamics regulated by signalling through the CTD code. eLife, 2015, 4: e09008. |
[87] | Yahia Y, Pigeot A, El Aabidine AZ, Shah N, Karasu N, Forné I, Krebs S, Blum H, Esnault C, Sexton T, Imhof A, Eick D, Andrau JC. RNA polymerase II CTD is dispensable for transcription and required for termination in human cells. EMBO Rep, 2023, 24(9): e56150. |
[88] |
Misteli T, Spector DL. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol Cell, 1999, 3(6): 697-705.
doi: 10.1016/s1097-2765(01)80002-2 pmid: 10394358 |
[89] |
Harlen KM, Trotta KL, Smith EE, Mosaheb MM, Fuchs SM, Churchman LS. Comprehensive RNA polymerase II interactomes reveal distinct and varied roles for each phospho-CTD residue. Cell Rep, 2016, 15(10): 2147-2158.
doi: S2211-1247(16)30577-0 pmid: 27239037 |
[90] |
Nojima T, Rebelo K, Gomes T, Grosso AR, Proudfoot NJ, Carmo-Fonseca M. RNA polymerase II phosphorylated on CTD serine 5 interacts with the spliceosome during co-transcriptional splicing. Mol Cell, 2018, 72(2): 369-379.e4.
doi: S1097-2765(18)30751-2 pmid: 30340024 |
[91] |
Gu B, Eick D, Bensaude O. CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo. Nucleic Acids Res, 2013, 41(3): 1591-1603.
doi: 10.1093/nar/gks1327 pmid: 23275552 |
[92] |
Egloff S, O'reilly D, Chapman RD, Taylor A, Tanzhaus K, Pitts L, Eick D, Murphy S. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science, 2007, 318(5857): 1777-1779.
doi: 10.1126/science.1145989 pmid: 18079403 |
[93] | Proudfoot NJ. Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut. Science, 2016, 352(6291): aad9926. |
[94] |
Lunde BM, Reichow SL, Kim M, Suh H, Leeper TC, Yang F, Mutschler H, Buratowski S, Meinhart A, Varani G. Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. Nat Struct Mol Biol, 2010, 17(10): 1195-1201.
doi: 10.1038/nsmb.1893 pmid: 20818393 |
[95] |
Shah N, Maqbool MA, Yahia Y, El Aabidine AZ, Esnault C, Forné I, Decker TM, Martin D, Schüller R, Krebs S, Blum H, Imhof A, Eick D, Andrau JC. Tyrosine-1 of RNA polymerase II CTD controls global termination of gene transcription in mammals. Mol Cell, 2018, 69(1): 48-61.e6.
doi: S1097-2765(17)30937-1 pmid: 29304333 |
[96] |
Schlackow M, Nojima T, Gomes T, Dhir A, Carmo-Fonseca M, Proudfoot NJ. Distinctive patterns of transcription and RNA processing for human lincRNAs. Mol Cell, 2017, 65(1): 25-38.
doi: S1097-2765(16)30774-2 pmid: 28017589 |
[97] | Nemec CM, Yang F, Gilmore JM, Hintermair C, Ho YH, Tseng SC, Heidemann M, Zhang Y, Florens L, Gasch AP, Eick D, Washburn MP, Varani G, Ansari AZ. Different phosphoisoforms of RNA polymerase II engage the Rtt103 termination factor in a structurally analogous manner. Proc Natl Acad Sci USA, 2017, 114(20): E3944-E3953. |
[98] |
Egloff S, Murphy S. Cracking the RNA polymerase II CTD code. Trends Genet, 2008, 24(6): 280-288.
doi: 10.1016/j.tig.2008.03.008 pmid: 18457900 |
[99] | Rodriguez-Molina JB, West S, Passmore LA. Knowing when to stop: transcription termination on protein-coding genes by eukaryotic RNAPII. Mol Cell, 2023, 83(3): 404-415. |
[100] | Zhang MM, Wang XDJ, Chen X, Bowman ME, Luo YH, Noel JP, Ellington AD, Etzkorn FA, Zhang Y. Structural and kinetic analysis of prolyl-isomerization/ phosphorylation cross-talk in the CTD code. ACS Chem Biol, 2012, 7(8): 1462-1470. |
[101] |
Rougvie AE, Lis JT. The RNA polymerase II molecule at the 5' end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell, 1988, 54(6): 795-804.
pmid: 3136931 |
[102] |
Ranuncolo SM, Ghosh S, Hanover JA, Hart GW, Lewis BA. Evidence of the involvement of O-GlcNAc- modified human RNA polymerase II CTD in transcription in vitro and in vivo. J Biol Chem, 2012, 287(28): 23549-23561.
doi: 10.1074/jbc.M111.330910 pmid: 22605332 |
[103] | Lewis BA. The role of O-GlcNAcylation in RNA polymerase II transcription. J Biol Chem, 2024, 300(3): 105705. |
[104] |
Wansink DG, Schul W, Van der Kraan I, Van Steensel B, Van Driel R, de Jong L. Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol, 1993, 122(2): 283-293.
pmid: 8320255 |
[105] |
Jackson DA, Hassan AB, Errington RJ, Cook PR. Visualization of focal sites of transcription within human nuclei. EMBO J, 1993, 12(3): 1059-1065.
doi: 10.1002/j.1460-2075.1993.tb05747.x pmid: 8458323 |
[106] |
Li GL, Ruan XA, Auerbach RK, Sandhu KS, Zheng MZ, Wang P, Poh HM, Goh Y, Lim J, Zhang JY, Sim HS, Peh SQ, Mulawadi FH, Ong CT, Orlov YL, Hong SZ, Zhang ZZ, Landt S, Raha D, Euskirchen G, Wei CL, Ge WH, Wang HE, Davis C, Fisher-Aylor KI, Mortazavi A, Gerstein M, Gingeras T, Wold B, Sun Y, Fullwood MJ, Cheung E, Liu E, Sung WK, Snyder M, Ruan YJ. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell, 2012, 148(1-2): 84-98.
doi: 10.1016/j.cell.2011.12.014 pmid: 22265404 |
[107] |
Cisse II, Izeddin I, Causse SZ, Boudarene L, Senecal A, Muresan L, Dugast-Darzacq C, Hajj B, Dahan M, Darzacq X. Real-time dynamics of RNA polymerase II clustering in live human cells. Science, 2013, 341(6146): 664-667.
doi: 10.1126/science.1239053 pmid: 23828889 |
[108] |
Chen XZ, Wei M, Zheng MM, Zhao JX, Hao HW, Chang L, Xi P, Sun YJ. Study of RNA polymerase II clustering inside live-cell nuclei using Bayesian nanoscopy. ACS Nano, 2016, 10(2): 2447-2454.
doi: 10.1021/acsnano.5b07257 pmid: 26855123 |
[109] | Ling YH, Ye ZY, Liang C, Yu CF, Park G, Corden JL, Wu C. Disordered C-terminal domain drives spatiotemporal confinement of RNAPII to enhance search for chromatin targets. Nat Cell Biol, 2024, 26(4): 581-592. |
[110] | Zhang Q, Kim W, Panina S, Mayfield JE, Portz B, Zhang YJ. Variation of C-terminal domain governs RNA polymerase II genomic locations and alternative splicing in eukaryotic transcription. bioRxiv, 2024. |
[111] |
Portz B, Shorter J. Switching condensates: the CTD code goes liquid. Trends Biochem Sci, 2020, 45(1): 1-3.
doi: S0968-0004(19)30210-5 pmid: 31734037 |
[112] | Changiarath A, Flores-Solis D, Michels JJ, Rodriguez RH, Hanson SM, Schmid F, Zweckstetter M, Padeken J, Stelzl LS. Promoter and gene-body RNA-polymerase II co-exist in partial demixed condensates. bioRxiv, 2024. |
[113] | Mayfield JE, Irani S, Escobar EE, Zhang Z, Burkholder NT, Robinson MR, Mehaffey MR, Sipe SN, Yang WJ, Prescott NA, Kathuria KR, Liu ZJ, Brodbelt JS, Zhang Y. Tyr1 phosphorylation promotes phosphorylation of Ser2 on the C-terminal domain of eukaryotic RNA polymerase II by P-TEFb. eLife, 2019, 8: e48725. |
[114] |
Henninger JE, Oksuz O, Shrinivas K, Sagi I, Leroy G, Zheng MM, Andrews JO, Zamudio AV, Lazaris C, Hannett NM, Lee TI, Sharp PA, Cissé Ii, Chakraborty AK, Young RA. RNA-mediated feedback control of transcriptional condensates. Cell, 2021, 184(1): 207-225.e24.
doi: 10.1016/j.cell.2020.11.030 pmid: 33333019 |
[1] | Jilong Wang, Qing Li, Tingzheng Zhan. Principle and application of self-transcribing active regulatory region sequencing in enhancer discovery research [J]. Hereditas(Beijing), 2024, 46(8): 589-602. |
[2] | Zihan Ni, Yu Min, Lingling Ma, Yoshinori Watanabe. The effect of centromere protein Fta2 phosphorylation during meiosis [J]. Hereditas(Beijing), 2024, 46(7): 552-559. |
[3] | Zhaoran Sun, Xudong Wu. The roles and mechanisms of histone variant H2A.Z in transcriptional regulation [J]. Hereditas(Beijing), 2024, 46(4): 279-289. |
[4] | Jiaxin Hong, Song’en Xu, Wenqing Zhang, Wei Liu. The interaction of Pu.1 and cMyb in zebrafish neutrophil development [J]. Hereditas(Beijing), 2024, 46(4): 319-332. |
[5] | Linlin You, Yu Zhang. Progress on molecular mechanisms of bacterial transcription termination [J]. Hereditas(Beijing), 2024, 46(12): 982-994. |
[6] | Luyan Tian, Xiaozhen Huang. Application value of protein phase separation mechanism of flowering regulation in de novo domestication [J]. Hereditas(Beijing), 2023, 45(9): 754-764. |
[7] | Meng Yuan, Hui Li, Shouzhi Wang. Massively parallel reporter assay: a novel technique for analyzing the regulation of gene expression [J]. Hereditas(Beijing), 2023, 45(10): 859-873. |
[8] | Dandan Wu, Mingkun Zhu, Zhongyan Fang, Wei Ma. Progress on molecular composition and genetic mechanism of plant B chromosomes [J]. Hereditas(Beijing), 2022, 44(9): 772-782. |
[9] | Fengyu Sun, Qianghua Xu. Research progress of microRNAs involved in hematopoiesis [J]. Hereditas(Beijing), 2022, 44(9): 756-771. |
[10] | Rongrong Mu, Qingqing Niu, Yuqiang Sun, Jun Mei, Meng Miao. Cloning and characterization of the MYB transcription factor gene GhTT2 in Gossypium hirsutum [J]. Hereditas(Beijing), 2022, 44(8): 720-728. |
[11] | Yuan Zhang, Yuting Zhao, Lenan Zhuang, Jin He. Transcriptional regulation of transcriptional Mediator complexes in cardiovascular development and disease [J]. Hereditas(Beijing), 2022, 44(5): 383-397. |
[12] | Haoliang Cui, Peihua Shi, Jinchun Gao, Xinbo Zhang, Shunran Zhao, Chenyu Tao. Progress on the study of nucleosome reorganization during cellular reprogramming [J]. Hereditas(Beijing), 2022, 44(3): 208-215. |
[13] | Guofang Liu, Peidong Ren, Wenxin Ye, Guangtao Lu. Analysis of transcriptional regulators HpaR1 and Clp regulating the expression of glycoside hydrolase-encoding gene in the Xanthomonas campestris pv. campestris [J]. Hereditas(Beijing), 2021, 43(9): 910-920. |
[14] | Tianyi Wang, Yingxiang Wang, Chenjiang You. Structural and functional characteristics of plant PHD domain-containing proteins [J]. Hereditas(Beijing), 2021, 43(4): 323-339. |
[15] | Menggang Lv, Aijia Liu, Qingwei Li, Peng Su. Progress on the origin, function and evolutionary mechanism of RHR transcription factor family [J]. Hereditas(Beijing), 2021, 43(3): 215-225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号