遗传 ›› 2025, Vol. 47 ›› Issue (12): 1377-1386.doi: 10.16288/j.yczz.25-182

• 遗传学教学 • 上一篇    

知微与思序:探索复杂系统

杨淼泠1,2(), 杜茁1,2()   

  1. 1.中国科学院遗传与发育生物学研究所北京 100101
    2.中国科学院大学北京 100093
  • 收稿日期:2025-06-24 修回日期:2025-08-14 出版日期:2025-12-20 发布日期:2025-08-19
  • 通讯作者: 杜茁,博士,研究员,研究方向:发育时空编程与动态调控规律。E-mail: zdu@genetics.ac.cn
  • 作者简介:杨淼泠,博士研究生,专业方向:发育生物学。E-mail: yangmiaoling@genetics.ac.cn
  • 基金资助:
    国家自然科学基金(32325032)

A journey into biological complexity: continuing the legacy of Doug and Bill

Miaoling Yang1,2(), Zhuo Du1,2()   

  1. 1. Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
    2. University of Chinese Academy of Sciences, Beijing 100093, China
  • Received:2025-06-24 Revised:2025-08-14 Published:2025-12-20 Online:2025-08-19
  • Supported by:
    National Natural Science Foundation of China(32325032)

摘要:

面对生命这一结构复杂、层级丰富、动态性强的系统,应当如何选择并采用更为有效的方法开展研究?这一问题的答案与重点在生命科学的不同发展阶段也不尽相同。20世纪90年代两则经典故事:《道格的救赎》(The Salvation of Doug)与《比尔的消亡》(The Demise of Bill),曾以汽车为类比对象,用讽刺笔法生动呈现了遗传学家与生物化学家理解汽车运行机制所采用的不同研究策略:是通过拆解组分、解析互作来揭示潜在机制,还是借助功能扰动来识别系统的关键环节?哪种方法能更有效解析生命过程?作为启发式寓言,它们在当时引发了关于不同研究方法优劣与互补性的广泛讨论。时至今日,这两则故事仍是教学中的重要素材。当前,生命科学进入高通量、高精度、多维度融合的新阶段,传统的单一路径研究策略已难以支撑对复杂生命过程深入而系统地理解。生命活动具有模块化结构、调控网络、非线性响应以及适应性补偿等诸多特性,而单一策略往往仅能捕捉其局部、静态特征,难以还原整体的动态特征和调控规律,从而限制了对复杂生命过程的系统认知,也制约了理论深化与应用突破。基于此,本文尝试对上述两个经典故事进行了续写,将其延伸至更具时代特征的场景中,并赋予了主角具有象征意义的中文名字:“知微”(代表生化路径)和“思序”(象征遗传思路)。通过讲述他们在探索智能电动汽车系统的运行原理过程中,如何从各自为营的局面逐渐走向协作与共赢,运用高通量手段,开展系统性分析,并引入数字仿真建模,逐步揭示复杂系统行为背后的结构特性与运行逻辑。故事呼应当前生命科学对系统性与动态性研究的日益重视及其所面临的挑战,强调方法融合与创新的关键作用,鼓励读者思考遗传学方法在当代研究范式中的定位与价值,旨在为遗传学及相关学科的教学提供参考。

关键词: 遗传学, 生物化学, 多学科交叉, 复杂生命系统, 高通量分析, 系统生物学, 调控网络, 稳健性, 可塑性, 建模

Abstract:

Given the inherent complexity, hierarchical organization, and dynamic nature of living systems, there is no single best strategy for investigation, and priorities shift with the evolution of the life sciences. In the 1990s, two classic stories, The Salvation of Doug and The Demise of Bill, used automobiles as analogies and satire to contrast two research strategies: dismantling components to uncover underlying mechanisms, or applying functional perturbations to identify critical elements. These heuristic parables stimulated broad discussion on the respective strengths and limitations of different research approaches and continue to be widely used in teaching today. The life sciences have since entered an era integrating high-throughput, high-resolution, and multidimensional approaches, where single-path strategies can no longer provide deep, systematic insights into complex biological processes. We view the intrinsic features of living systems, such as modular organization, regulatory networks, nonlinear responses, and adaptive compensation, as factors that make any single approach likely to capture only local, static aspects, thereby hindering the reconstruction of systems-level, dynamic properties. Against this backdrop, we present a modern continuation of the two parables, reimagined in a contemporary setting and featuring two protagonists with symbolic Chinese names, “Zhiwei” (meaning “decoding hidden mechanisms”) and “Sixu” (“reasoning through order”), who personify biochemical and genetic mindsets. In our narrative, the two protagonists transition from working independently to collaborating, integrating high-throughput experimentation, systems-level analysis, and computational modeling to uncover structural and operational principles underlying complex systems. We believe this retelling reflects the growing emphasis on systems-level and dynamic perspectives in biology, highlighting the value of methodological integration and innovation. We hope it will serve as a valuable resource for teaching in genetics and related disciplines, while fostering reflection on the enduring relevance of genetic reasoning in contemporary research.

Key words: genetics, biochemistry, interdisciplinary research, complex biological systems, high-throughput analysis, systems biology, regulatory networks, robustness, plasticity, modeling