[1] American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5). 5th ed. Arlington: American Psychiatric Publishing, 2013.
[2] Autism and Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators. Prevalence of autism spectrum disorder among children aged 8 years autism and developmental disabilities monitoring network, 11 sites, United States, 2010 . MMWR , 2014, 63(2): 1-21.
[3] Kim YS, Leventhal BL, Koh YJ, Fombonne E, Laska E, Lim EC, Cheon KA, Kim SJ, Kim YK, Lee H, Song DH, Grinker RR. Prevalence of autism spectrum disorders in a total population sample . Am J Psychiatry , 2011, 168(9): 904-912.
[4] Wan YM, Hu Q, Li T, Jiang LJ, Du YS, Feng L, Wong JCM, Li CB. Prevalence of autism spectrum disorders among children in China: a systematic review . Shanghai Arch Psychiatry , 2013, 25(2): 70-80.
[5] Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology . Nat Rev Genet , 2008, 9(5): 341-355.
[6] Freitag CM. The genetics of autistic disorders and its clinical relevance: a review of the literature . Mol Psychiatry , 2007, 12(1): 2-22.
[7] Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, Sabo A, Lin CF, Stevens C, Wang LS, Makarov V, Polak P, Yoon S, Maguire J, Crawford EL, Campbell NG, Geller ET, Valladares O, Schafer C, Liu H, Zhao T, Cai GQ, Lihm J, Dannenfelser R, Jabado O, Peralta Z, Nagaswamy U, Muzny D, Reid JG, Newsham I, Wu YQ, Lewis L, Han Y, Voight BF, Lim E, Rossin E, Kirby A, Flannick J, Fromer M, Shakir K, Fennell T, Garimella K, Banks E, Poplin R, Gabriel S, DePristo M, Wimbish JR, Boone BE, Levy SE, Betancur C, Sunyaev S, Boerwinkle E, Buxbaum JD, Cook EH, Jr., Devlin B, Gibbs RA, Roeder K, Schellenberg GD, Sutcliffe JS, Daly MJ. Patterns and rates of exonic de novo mutations in autism spectrum disorders . Nature , 2012, 485(7397): 242-245.
[8] Berryer MH, Hamdan FF, Klitten LL, Møller RS, Carmant L, Schwartzentruber J, Patry L, Dobrzeniecka S, Rochefort D, Neugnot-Cerioli M, Lacaille JC, Niu Z, Eng CM, Yang YP, Palardy S, Belhumeur C, Rouleau GA, Tommerup N, Immken L, Beauchamp MH, Patel GS, Majewski J, Tarnopolsky MA, Scheffzek K, Hjalgrim H, Michaud JL, Di Cristo G. Mutations in SYNGAP1 cause intellectual disability, autism, and a specific form of epilepsy by inducing haploinsufficiency . Hum Mutat , 2013, 34(2): 385-394.
[9] O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, Levy R, Ko A, Lee C, Smith JD, Turner EH, Stanaway IB, Vernot B, Malig M, Baker C, Reilly B, Akey JM, Borenstein E, Rieder MJ, Nickerson DA, Bernier R, Shendure J, Eichler EE. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations . Nature , 2012, 485(7397): 246-250.
[10] Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, Stessman HA, Witherspoon KT, Vives L, Patterson KE, Smith JD, Paeper B, Nickerson DA, Dea J, Dong S, Gonzalez LE, Mandell JD, Mane SM, Murtha MT, Sullivan CA, Walker MF, Waqar Z, Wei LP, Willsey AJ, Yamrom B, Lee YH, Grabowska E, Dalkic E, Wang ZH, Marks S, Andrews P, Leotta A, Kendall J, Hakker I, Rosenbaum J, Ma BC, Rodgers L, Troge J, Narzisi G, Yoon S, Schatz MC, Ye K, McCombie WR, Shendure J, Eichler EE, State MW, Wigler M. The contribution of de novo coding mutations to autism spectrum disorder . Nature , 2014, 515(7526): 216-221.
[11] Jeste SS, Geschwind DH. Disentangling the heterogeneity of autism spectrum disorder through genetic findings . Nat Rev Neurol , 2014, 10(2): 74-81.
[12] Jiang YH, Ehlers MD. Modeling autism by SHANK gene mutations in mice . Neuron , 2013, 78(1): 8-27.
[13] Basu SN, Kollu R, Banerjee-Basu S. AutDB: a gene reference resource for autism research . Nucleic Acids Res , 2009, 37: D832-D836.
[14] Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, Lehtimaki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M. Strong association of de novo copy number mutations with autism . Science , 2007, 316(5823): 445-449.
[15] Toro R, Konyukh M, Delorme R, Leblond C, Chaste P, Fauchereau F, Coleman M, Leboyer M, Gillberg C, Bourgeron T. Key role for gene dosage and synaptic homeostasis in autism spectrum disorders . Trends Genet , 2010, 26(8): 363-372.
[16] Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsäter H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Rogé B, Héron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders . Nat Genet , 2007, 39(1): 25-27.
[17] Han K, Holder JL, Jr., Schaaf CP, Lu H, Chen HM, Kang H, Tang JR, Wu ZY, Hao S, Cheung SW, Yu P, Sun H, Breman AM, Patel A, Lu HC, Zoghbi HY. SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties . Nature , 2013, 503(7474): 72-77.
[18] Kwasnicka-Crawford DA, Roberts W, Scherer SW. Characterization of an autism-associated segmental maternal heterodisomy of the chromosome 15q11-13 region . J Autism Dev Disord , 2007, 37(4): 694-702.
[19] Betancur C, Buxbaum JD. SHANK3 haploinsufficiency: a "common" but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders . Mol Autism , 2013, 4(1): 17.
[20] Gauthier J, Champagne N, Lafreniere RG, Xiong L, Spiegelman D, Brustein E, Lapointe M, Peng HS, Côté M, Noreau A, Hamdan FF, Addington AM, Rapoport JL, DeLisi LE, Krebs MO, Joober R, Fathalli F, Mouaffak F, Haghighi AP, Néri C, Dubé MP, Samuels ME, Marineau C, Stone EA, Awadalla P, Barker PA, Carbonetto S, Drapeau P, Rouleau GA, the S2D Team. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia . Proc Natl Acad Sci USA , 2010, 107(17): 7863-7868.
[21] Crawley JN. Designing mouse behavioral tasks relevant to autistic-like behaviors . Ment Retard Dev Disabil Res Rev , 2004, 10(4): 248-258.
[22] Gatto CL, Broadie K. Drosophila modeling of heritable neurodevelopmental disorders . Curr Opin Neurobiol , 2011, 21(6): 834-841.
[23] Zhang YQ, Bailey AM, Matthies HJG, Renden RB, Smith MA, Speese SD, Rubin GM, Broadie K. Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function . Cell , 2001, 107(5): 591-603.
[24] Yao AY, Jin S, Li XH, Liu ZH, Ma XH, Tang J, Zhang YQ. Drosophila FMRP regulates microtubule network formation and axonal transport of mitochondria . Hum Mol Genet , 2011, 20(1): 51-63.
[25] Sun MK, Xing GL, Yuan LD, Gan GM, Knight D, With SI, He C, Han JH, Zeng XK, Fang M, Boulianne GL, Xie W. Neuroligin 2 is required for synapse development and function at the Drosophila neuromuscular junction . J Neurosci , 2011, 31(2): 687-699.
[26] Hu ZT, Hom S, Kudze T, Tong XJ, Choi S, Aramuni G, Zhang WQ, Kaplan JM. Neurexin and neuroligin mediate retrograde synaptic inhibition in C . elegans. Science , 2012, 337(6097): 980-984.
[27] Berg JM, Geschwind DH. Autism genetics: searching for specificity and convergence . Genome Biol , 2012, 13(7): 247.
[28] Rodier PM, Ingram JL, Tisdale B, Croog VJ. Linking etiologies in humans and animal models: studies of autism . Reprod Toxicol , 1997, 11(2-3): 417-422.
[29] Markram H, Rinaldi T, Markram K. The intense world syndrome-an alternative hypothesis for autism . Front Neurosci , 2007, 1(1): 77-96.
[30] Tyzio R, Nardou R, Ferrari DC, Tsintsadze T, Shahrokhi A, Eftekhari S, Khalilov I, Tsintsadze V, Brouchoud C, Chazal G, Lemonnier E, Lozovaya N, Burnashev N, Ben-Ari Y. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring . Science , 2014, 343(6171): 675-679.
[31] Schneider T, Turczak J, Przewlocki R. Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid: Issues for a therapeutic approach in autism . Neuropsychopharmacology , 2006, 31(1): 36-46.
[32] Rosvold HE, Mirsky AF, Pribram KH. Influence of amygdalectomy on social behavior in monkeys . J Comp Physiol Psychol , 1954, 47(3): 173-178.
[33] Martin LA, Ashwood P, Braunschweig D, Cabanlit M, Van de Water J, Amaral DG. Stereotypies and hyperactivity in rhesus monkeys exposed to IgG from mothers of children with autism . Brain Behav Immun , 2008, 22(6): 806-816.
[34] De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, Kou Y, Liu L, Fromer M, Walker S, Singh T, Klei L, Kosmicki J, Fu SC, Aleksic B, Biscaldi M, Bolton PF, Brownfeld JM, Cai JL, Campbell NG, Carracedo A, Chahrour MH, Chiocchetti AG, Coon H, Crawford EL, Crooks L, Curran SR, Dawson G, Duketis E, Fernandez BA, Gallagher L, Geller E, Guter SJ, Hill RS, Ionita-Laza I, Gonzalez PJ, Kilpinen H, Klauck SM, Kolevzon A, Lee I, Lei J, Lehtimäki T, Lin CF, Ma'ayan A, Marshall CR, McInnes AL, Neale B, Owen MJ, Ozaki N, Parellada M, Parr JR, Purcell S, Puura K, Rajagopalan D, Rehnström K, Reichenberg A, Sabo A, Sachse M, Sanders SJ, Schafer C, Schulte-Rüther M, Skuse D, Stevens C, Szatmari P, Tammimies K, Valladares O, Voran A, Wang LS, Weiss LA, Willsey AJ, Yu TW, Yuen RKC, the DDD Study, Homozygosity Mapping Collaborative for Autism, UK10K Consortium, the Autism Sequencing Consortium, Cook EH, Freitag CM, Gill M, Hultman CM, Lehner T, Palotie A, Schellenberg GD, Skiar P, State MW, Sutcliffe JS, Walsh CA, Scherer SW, Zwick ME, Barrett JC, Cutler DJ, Roeder K, Devlin B, Daly MJ, Buxbaum JD. Synaptic, transcriptional and chromatin genes disrupted in autism . Nature , 2014, 515(7526): 209-215.
[35] Dindot SV, Antalffy BA, Bhattacharjee MB, Beaudet AL. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology . Hum Mol Genet , 2008, 17(1): 111-118.
[36] Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, Brakeman P, Doan A, Aakalu VK, Lanahan AA, Sheng M, Worley PF. Coupling of mGluR/Homer and PSD-95 complexes by the shank family of postsynaptic density proteins . Neuron , 1999, 23(3): 583-592.
[37] Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, Kuebler A, Janssen AL, Udvardi PT, Shiban E, Spilker C, Balschun D, Skryabin BV, Dieck St, Smalla KH, Montag D, Leblond CS, Faure P, Torquet N, Le Sourd AM, Toro R, Grabrucker AM, Shoichet SA, Schmitz D, Kreutz MR, Bourgeron T, Gundelfinger ED, Boeckers TM. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2 . Nature , 2012, 486(7402): 256-260.
[38] Peça J, Ting J, Feng GP. SnapShot: Autism and the synapse . Cell , 2011, 147(3): 706.
[39] Cohen S, Gabel HW, Hemberg M, Hutchinson AN, Sadacca LA, Ebert DH, Harmin DA, Greenberg RS, Verdine VK, Zhou ZL, Wetsel WC, West AE, Greenberg ME. Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function . Neuron , 2011, 72(1): 72-85.
[40] Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, Witherspoon K, Gerdts J, Baker C, Vulto-van Silfhout AT, Schuurs-Hoeijmakers JH, Fichera M, Bosco P, Buono S, Alberti A, Failla P, Peeters H, Steyaert J, Vissers LELM, Francescatto L, Mefford HC, Rosenfeld JA, Bakken T, O'Roak BJ, Pawlus M, Moon R, Shendure J, Amaral DG, Lein E, Rankin J, Romano C, de Vries BBA, Katsanis N, Eichler EE. Disruptive CHD8 mutations define a subtype of autism early in development . Cell , 2014, 158(2): 263-276.
[41] Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O'Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C, Huguenard JR, Hegemann P, Deisseroth K. Neocortical excitation/inhibition balance in information processing and social dysfunction . Nature , 2011, 477(7363): 171-178.
[42] Watson KK, Platt ML. Of mice and monkeys: using non-human primate models to bridge mouse- and human-based investigations of autism spectrum disorders . J Neurodev Disord , 2012, 4(1): 21.
[43] Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH, Lammers CR, Reiss AL, Amaral DG. The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages . J Neurosci , 2004, 24(28): 6392-6401.
[44] Kleinhans NM, Richards T, Sterling L, Stegbauer KC, Mahurin R, Johnson LC, Greenson J, Dawson G, Aylward E. Abnormal functional connectivity in autism spectrum disorders during face processing . Brain , 2008, 131(4): 1000-1012.
[45] Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, Chisum HJ, Moses P, Pierce K, Lord C, Lincoln AJ, Pizzo S, Schreibman L, Haas RH, Akshoomoff NA, Courchesne RY. Unusual brain growth patterns in early life in patients with autistic disorder-An MRI study . Neurology , 2001, 57(2): 245-254.
[46] Hahamy A, Behrmann M, Malach R. The idiosyncratic brain: distortion of spontaneous connectivity patterns in autism spectrum disorder . Nat Neurosci , 2015, 18(2): 302-309.
[47] Casanova MF, Buxhoeveden DP, Switala AE, Roy E. Minicolumnar pathology in autism . Neurology , 2002, 58(3): 428-432.
[48] Casanova MF, El-Baz A, Vanbogaert E, Narahari P, Switala A. A topographic study of minicolumnar core width by lamina comparison between autistic subjects and controls: possible minicolumnar disruption due to an anatomical element in-common to multiple laminae . Brain Pathol , 2010, 20(2): 451-458.
[49] Ehninger D, Han S, Shilyansky C, Zhou Y, Li WD, Kwiatkowski DJ, Ramesh V, Silva AJ. Reversal of learning deficits in a Tsc2 +/- mouse model of tuberous sclerosis . Nat Med , 2008, 14(8): 843-848.
[50] Huang HS, Allen JA, Mabb AM, King IF, Miriyala J, Taylor-Blake B, Sciaky N, Dutton JW, Jr., Lee HM, Chen X, Jin J, Bridges AS, Zylka MJ, Roth BL, Philpot BD. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons . Nature , 2012, 481(7380): 185-189.
[51] Meng LY, Ward AJ, Chun S, Bennett CF, Beaudet AL, Rigo F. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA . Nature , 2015, 518(7539): 409-412.
[52] Pop AS, Gomez-Mancilla B, Neri G, Willemsen R, Gasparini F. Fragile X syndrome: a preclinical review on metabotropic glutamate receptor 5 (mGluR5) antagonists and drug development . Psychopharmacology (Berl) , 2014, 231(6): 1217-1226.
[53] Shcheglovitov A, Shcheglovitova O, Yazawa M, Portmann T, Shu R, Sebastiano V, Krawisz A, Froehlich W, Bernstein JA, Hallmayer JF, Dolmetsch RE. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients . Nature , 2013, 503(7475): 267-271.
[54] Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, Flannery R, Jaenisch R, Sur M. Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice . Proc Natl Acad Sci USA , 2009, 106(6): 2029-2034.
[55] Andari E, Duhamel JR, Zalla T, Herbrecht E, Leboyer M, Sirigu A. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders . Proc Natl Acad Sci USA , 2010, 107(9): 4389-4394.
[56] Peñagarikano O, Lázaro MT, Lu XH, Gordon A, Dong HM, Lam HA, Peles E, Maidment NT, Murphy NP, Yang XW, Golshani P, Geschwind DH. Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism . Sci Transl Med , 2015, 7(271): 271ra8.
[57] Schaefer GB, Mendelsohn NJ, Professional Practice and Guidelines Committee. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions . Genet Med , 2013, 15(8): 669.
[58] Cuccaro ML, Czape K, Alessandri M, Lee J, Deppen AR, Bendik E, Dueker N, Nations L, Pericak-Vance M, Hahn S. Genetic testing and corresponding services among individuals with autism spectrum disorder (ASD) . Am J Med Genet A , 2014, 164A(10): 2592-2600.
[59] Ozonoff S, Young GS, Carter A, Messinger D, Yirmiya N, Zwaigenbaum L, Bryson S, Carver LJ, Constantino JN, Dobkins K, Hutman T, Iverson JM, Landa R, Rogers SJ, Sigman M, Stone WL. Recurrence risk for autism spectrum disorders: a baby siblings research consortium study . Pediatrics , 2011, 128(3): e488-e495. |