[1] Baker AJM. Metal tolerance. New Phytol, 1987, 106(1): 93-111.[2] Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 2001, 212(4): 475-486.[3] Hall JL. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot, 2002, 53(366): 1-11.[4] Feng H, Chen C, Wang YQ, Qiu JL, Chu CC, Du XH. Plant SNAREs and their biological functions. Hereditas, 2009, 31(5): 471-478.[5] Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P. Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science, 2005, 310(5751): 1180-1183.[6] Bao YM, Wang JF, Huang J, Zhang HS. Cloning and characterization of three genes encoding Qb-SNARE proteins in rice. Mol Genet Genomics, 2008, 279(3): 291-301.[7] Geelen D, Leyman B, Batoko H, Di Sansabastiano GP, Moore I, Blatt MR. The abscisic acid-related SNARE homolog NtSyr1 contributes to secretion and growth: Evidence from competition with its cytosolic domain. Plant Cell, 2002, 14(2): 387-406.[8] Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Hückelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P. SNARE- protein-mediated disease resistance at the plant cell wall. Nature, 2003, 425(6961): 973-977.[9] Leshem Y, Golani Y, Kaye Y, Levine A. Reduced expression of the v-SNAREs AtVAMP71/AtVAMP7C gene family in Arabidopsis reduces drought tolerance by suppression of abscisic acid-dependent stomatal closure. J Exp Bot, 2010, 61(10): 2615-2622.[10] Benschop JJ, Mohammed S, O’Flaherty M, Heck AJR, Slijper M, Menke FLH. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics, 2007, 6(7): 1198-1214.[11] Bao YM, Liu YH, Xu DQ, Huang J, Wang ZF, Wang JF, Zhang HS. Preparation, characterization and application of rice Qb-SNARE protein OsNPSN11 polyclonal antibody. Hereditas, 2010, 32(9): 961-965.[12] Wang FJ, Zeng B, Sun ZX, Zhu C. Relationship between proline and Hg2+-induced oxidative stress in a tolerant rice mutant. Arch Environ Contam Toxicol, 2009, 56(4): 723-731.[13] Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Method Enzymol, 2002, 350: 87-96.[14] Yan SP, Tang ZC, Su WA, Sun WN. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics, 2005, 5(1): 235-244.[15] Chitteti BR, Peng HH. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J Proteome Res, 2007, 6(5): 1718-1727.[16] Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R. Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotox Environ Safe, 2009, 72(4): 1102-1110.[17] Jürgens G. Membrane trafficking in plants. Annu Rev Cell Dev Biol, 2004, 20(1): 481-504.[18] Sokolovski S, Hills A, Gay RA, Blatt MR. Functional interaction of the SNARE protein NtSyp121 in Ca2+ channel gating, Ca2+ transients and ABA signalling of stomatal guard cells. Mol Plant, 2008, 1(2): 347-358.[19] Leshem Y, Melamed-Book N, Cagnac O, Ronen G, Nishri Y, Solomon M, Cohen G, Levine A. Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci USA, 2006, 103(47): 18008-18013.[20] Mazel A, Leshem Y, Tiwari BS, Levine A. Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle traffick |