[1] Feng YC, He D, Yao ZY, Klionsky DJ. The machinery of macroautophagy. Cell Res , 2014, 24(1): 24-41. [2] Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C. Autophagy, plant senescence, and nutrient recycling. J Exp Bot , 2014, 65(14): 3799-3811. [3] Amaya C, Fader CM, Colombo MI. Autophagy and proteins involved in vesicular trafficking. FEBS Lett , 2015, 589(22): 3343-3353. [4] Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature , 2008, 451(7182): 1069-1075. [5] Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol , 2011, 27: 107-132. [6] Chen YY, Chen HY, Lu DR. Molecular mechanisms of SNARE proteins in regulating autophagy. Hereditas (Beijing) , 2014, 36(6): 547-551. 陈元渊, 陈红岩, 卢大儒. SNARE蛋白调控细胞自噬的分子机制. 遗传, 2014, 36(6): 547-551. [7] Bassham DC. Function and regulation of macroautophagy in plants. Biochim Biophys Acta , 2009, 1793(9): 1397-1403. [8] Liu YM, Bassham DC. Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol , 2012, 63: 215-237. [9] Veljanovski V, Batoko H. Selective autophagy of non-ubiquitylated targets in plants: looking for cognate receptor/ adaptor proteins. Front Plant Sci , 2014, 5: 308. [10] Hanamata S, Kurusu T, Kuchitsu K. Roles of autophagy in male reproductive development in plants. Front Plant Sci , 2014, 5: 457. [11] Harrison-Lowe NJ, Olsen LJ. Autophagy protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana . Autophagy , 2008, 4(3): 339-348. [12] Patel S, Caplan J, Dinesh-Kumar SP. Autophagy in the control of programmed cell death. Curr Opin Plant Biol , 2006, 9(4): 391-396. [13] Zhou J, Yu JQ, Chen ZX. The perplexing role of autophagy in plant innate immune responses. Mol Plant Pathol , 2014, 15(6): 637-645. [14] Thompson AR, Vierstra RD. Autophagic recycling: lessons from yeast help define the process in plants. Curr Opin Plant Biol , 2005, 8(2): 165-173. [15] Kim SH, Kwon C, Lee JH, Chung T. Genes for plant autophagy: functions and interactions. Mol Cells , 2012, 34(5): 413-423. [16] Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, Yoshimoto K. Autophagy in development and stress responses of plants. Autophagy , 2006, 2(1): 2-11. [17] Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell , 2006, 124(3): 471-484. [18] Wang X, Sun DF, Fang JY. Research advances on the relationship of PI3-Kinase/Akt/mTOR pathway and epigenetic modification. Hereditas (Beijing) , 2006, 28(12): 1585-1590. 王霞, 孙丹凤, 房静远. mTOR信号途径与表观遗传关系的研究进展. 遗传, 2006, 28(12): 1585-1590. [19] Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell , 2002, 110(2): 177-189. [20] Wedaman KP, Reinke A, Anderson S, Rd YJ, Mccaffery JM, Powers T. Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae . Mol Biology Cell , 2003, 14(3): 1204-1220. [21] Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol , 2011, 13(2): 132-141. [22] Díaz-Troya S, Pérez-Pérez ME, Florencio FJ, Crespo JL. The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy , 2008, 4(7): 851-865. [23] Díaz-Troya S, Florencio FJ, Crespo JL. Target of rapamycin and LST8 proteins associate with membranes from the endoplasmic reticulum in the unicellular green alga Chlamydomonas reinhardtii . Eukaryotic Cell , 2008, 7(2): 212-222. [24] Pérez-Pérez ME, Florencio FJ, Crespo JL. Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii . Plant Physiol , 2010, 152(4): 1874-1888. [25] Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci USA , 2002, 99(9): 6422-6427. [26] Anderson GH, Veit B, Hanson MR. The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth. BMC Biol , 2005, 3: 12. [27] Deprost D, Truong HN, Robaglia C, Meyer C. An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development. Biochem Biophys Res Commun , 2005, 326(4): 844-850. [28] Moreau M, Azzopardi M, Clément G, Dobrenel T, Marchive C, Renne C, Martin-Magniette ML, Taconnat L, Renou JP, Robaglia C, Meyer C. Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell , 2012, 24(2): 463-481. [29] Mahfouz MM, Kim S, Delauney AJ, Verma DPS. Arabidopsis target of rapamycin interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell , 2006, 18(2): 477-490. [30] Liu YM, Bassham DC. TOR is a negative regulator of autophagy in Arabidopsis thaliana . PLoS One , 2010, 5(7): e11883. [31] Ahn CS, Han JA, Lee HS, Lee S, Pai HS. The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. Plant Cell , 2011, 23(1): 185-209. [32] Anderson GH, Hanson MR. The Arabidopsis Mei2 homologue AML1 binds AtRaptor1B, the plant homologue of a major regulator of eukaryotic cell growth. BMC Plant Biol , 2005, 5: 2. [33] Horvath BM, Zoltan M, Zhang YX, Hamburger AW, Bakó L, Visser RGF, Bachem CWB, Bögre L. EBP1 regulates organ size through cell growth and proliferation in plants. Embo J , 2006, 25(20): 4909-4920. [34] Lam BCH, Sage TL , Bianchi F , Blumwald E. Role of SH3 domain-containing proteins in clathrin-mediated vesicle trafficking in Arabidopsis . Plant Cell , 2001, 13(11): 2499-2512. [35] Zhuang XH, Wang H, Lam SK, Gao CJ, Wang XF, Cai Y, Jiang LW. A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis . Plant Cell , 2013, 25(11): 4596-4615. [36] Gao CJ, Zhuang XH, Cui Y, Fu X, He YL, Zhao Q, Zeng YL, Shen JB, Luo M, Jiang LW. Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation. Proc Natl Acad Sci USA , 2015, 112(6): 1886-1891. [37] Egan DF, Chun MG, Vamos M, Zou HX, Rong J, Miller CJ, Lou HJ, Raveendra-Panickar D, Yang CC, Sheffler DJ, Teriete P, Asara JM, Turk BE, Cosford ND, Shaw RJ. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol Cell , 2015, 59(2): 285-297. [38] Chen Y, Azad MB, Gibson SB. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ , 2009, 16(7): 1040-1052. [39] Vranová E, Inzé D, Van Breusegem F. Signal transduction during oxidative stress. J Exp Bot , 2002, 53(372): 1227-1236. [40] Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol , 2004, 4(3): 181-189. [41] Xiong Y, Contento AL, Nguyen PQ, Bassham DC. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis . Plant Physiol , 2007, 143(1): 291-299. [42] Shibata M, Oikawa K, Yoshimoto K, Kondo M, Mano S, Yamada K, Hayashi M, Sakamoto W, Ohsumi Y, Nishimura M. Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis . Plant Cell , 2013, 25(12): 4967-4983. [43] Xiong Y, Contento AL, Bassham DC. Disruption of autophagy results in constitutive oxidative stress in Arabidopsis . Autophagy , 2007, 3(3): 257-258. [44] Shin JH, Yoshimoto K, Ohsumi Y, Jeon JS, An G. OsATG10b , an autophagosome component, is needed for cell survival against oxidative stresses in rice. Mol Cells , 2009, 27(1): 67-74. [45] Han SJ, Wang Y, Zheng XY, Jia Q, Zhao JP, Bai F, Hong YG, Liu YL. Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamiana . Plant Cell , 2015, 27(4): 1316-1331. [46] Henry E, Fung N, Liu J, Drakakaki G, Coaker G. Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses. PLoS Genet , 2015, 11(4): e1005199. [47] Plaxton WC. The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol , 1996, 47(4): 185-214. [48] Álvarez C, García I, Moreno I, Pérez-Pérez ME, Crespo JL, Romero LC, Gotor C. Cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile in Arabidopsis . Plant Cell , 2012, 24(11): 4621-4634. [49] Rausch T, Wachter A. Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci , 2005, 10(10): 503-509. [50] Álvarez C, Calo L, Romero LC, García I, Gotor C. O-Acetylserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis . Plant Physiol , 2010, 152(2): 656-669. [51] Svenning S, Lamark T, Krause K, Johansen T. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/ SQSTM1. Autophagy , 2011, 7(9): 993-1010. [52] Zhou J, Wang J, Cheng Y, Chi YJ, Fan BF, Yu JQ, Chen ZX. NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genet , 2013, 9(1): e1003196. [53] Smalle J, Vierstra RD. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol , 2004, 55: 555-590. [54] Chen K, Cheng HH, Zhou RJ. Molecular mechanisms and functions of autophagy and the ubiquitin-proteasome pathway. Hereditas (Beijing) , 2012, 34(1): 5-18. 陈科, 程汉华, 周荣家. 自噬与泛素化蛋白降解途径的分子机制及其功能. 遗传, 2012, 34(1): 5-18. [55] Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol , 2009, 10(6): 385-397. [56] Dreher K, Callis J. Ubiquitin, hormones and biotic stress in plants. Ann Bot , 2007, 99(5): 787-822. [57] Marshall RS, Li FQ, Gemperline DC, Book AJ, Vierstra RD. Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis . Mol Cell , 2015, 58(6): 1053-1066. [58] Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem , 2009, 78(1): 477-513. [59] Bhattacharyya S, Yu HQ, Mim C, Matouschek A. Regulated protein turnover: snapshots of the proteasome in action. Nat Rev Mol Cell Biol , 2014, 15(2): 122-133. [60] Honig A, Avin-Wittenberg T, Ufaz S, Galili G. A new type of compartment, defined by plant-specific Atg8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation. Plant Cell , 2012, 24(1): 288- 303. [61] Michaeli S, Honig A, Levanony H, Peled-Zehavi H, Galili G. Arabidopsis ATG8-INTERACTING PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole. Plant Cell , 2014, 26(10): 4084-4101. [62] Spitzer C, Li FQ, Buono R, Roschzttardtz H, Chung T, Zhang M, Osteryoung KW, Vierstra RD, Otegui MS. The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis . Plant Cell , 2015, 27(2): 391-402. [63] Gechev TS, Hille J. Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol , 2005, 168(1): 17-20. (责任编委: 杨永华) |