遗传 ›› 2016, Vol. 38 ›› Issue (4): 275-288.doi: 10.16288/j.yczz.16-049
• 特邀综述 • 下一篇
张笑, 贾桂芳
收稿日期:
2016-02-01
修回日期:
2016-03-04
出版日期:
2016-04-20
发布日期:
2016-04-20
通讯作者:
贾桂芳,博士,副研究员,研究方向:RNA表观遗传学。E-mail: guifangjia@pku.edu.cn
作者简介:
张笑,博士研究生,研究方向:化学生物学。E-mail: zhangxiaoxiao@pku.edu.cn
基金资助:
Xiao Zhang, Guifang Jia
Received:
2016-02-01
Revised:
2016-03-04
Online:
2016-04-20
Published:
2016-04-20
摘要: N6-甲基腺嘌呤(N6-methyladenosine, m6A)是真核生物信使RNA(Messenger RNA, mRNA)上含量最多的化学修饰之一。类似于DNA和组蛋白化学修饰,m6A修饰也同样是动态可逆的,可在时间和空间上被甲基转移酶和去甲基酶调控。哺乳动物体内m6A甲基转移酶复合物中有一部分成分已被解析,主要有METTL3 (Methyltransferase-like protein 3)、METTL14 (Methyltransferase-like protein 14)和WTAP (Wilms tumor 1-associating protein)。m6A去甲基酶肥胖蛋白FTO (Fat mass and obesity associated protein)和ALKBH5 (AlkB homolog 5)依赖α-酮戊二酸(α-Ketoglutaric acid, α-KG)和Fe(Ⅱ)对m6A进行氧化去甲基化反应。m6A在生物体内由m6A结合蛋白识别,并介导其行使功能。目前发现的m6A结合蛋白有YTH结构域蛋白YTHDF1 (YTH domain-containing family protein 1)、YTHDF2 (YTH domain-containing family protein 2)、YTHDC1 (YTH domain-containing protein 1)和核内HNRNPA2B1 (Heterogeneous nuclear ribonucleoproteins A2B1)。本文综述了m6A的分布和相关蛋白介导的m6A功能研究,以期全面理解m6A这一RNA表观遗传新修饰在生命进程中的重要调控作用。
张笑, 贾桂芳. RNA表观遗传修饰:N6-甲基腺嘌呤[J]. 遗传, 2016, 38(4): 275-288.
Xiao Zhang, Guifang Jia. RNA epigenetic modification: N6-methyladenosine[J]. HEREDITAS(Beijing), 2016, 38(4): 275-288.
[1] Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jepp?esen P, Klein F, Bird A. Purification, sequence, and cell?ular localization of a novel chromosomal protein that binds to Methylated DNA. Cell, 1992, 69(6): 905–914. [2] Bird A. Methylation talk between histones and DNA. Science, 2001, 294(5549): 2113–2115. [3] Zhang LL, Wu JX. DNA methylation: an epigenetic mechanism for tumorigenesis. Hereditas (Beijing), 2006, 28(7): 880–885. 张丽丽, 吴建新. DNA甲基化——肿瘤产生的一种表观遗传学机制. 遗传, 2006, 28(7): 880–885. [4] Strahl BD, Allis CD. The language of covalent histone modifications. Nature, 2000, 403(6765): 41–45. [5] Wang Y, Wysocka J, Perlin J, Leonelli L, Allis C, Coonrod S. Linking covalent histone modifications to epigenetics: the rigidity and plasticity of the marks. Cold Spring Harb Symp Quant Biol, 2004, 69: 161–170. [6] Maden BEH. The numerous modified nucleotides in euk?aryotic ribosomal RNA. Prog Nucleic Acid Res Mol Biol, 1990, 39: 241–303. [7] Wang X, Lu ZK, Gomez A, Hon GC, Yue YN, Han DL, Fu Y, Parisien M, Dai Q, Jia GF, Ren B, Pan T, He C. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 2014, 505(7481): 117–120. [8] Wei CM, Gershowitz A, Moss B. Methylated nucleo?tides block 5' terminus of HeLa cell messenger RNA. Cell, 1975, 4(4): 379–386. [9] Li XY, Xiong XS, Wang K, Wang LX, Shu XT, Ma SQ, Yi CQ. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat Chem Biol, 2016, doi: 10.1038/nchembio.2040. [10] Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC, Zheng GQ, Pan T, Solomon O, Eyal E, Hershkovitz V, Han DL, Doré LC, Amariglio N, Rechavi G, He C. The dynamic N1-methyladenosine met?hylome in eukaryotic messenger RNA. Nature, 2016, 530(7591): 441–446. [11] Li XY, Zhu P, Ma SQ, Song JH, Bai JY, Sun FF, Yi CQ. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol, 2015, 11(8): 592–597. [12] Dubin DT, Taylor RH. The methylation state of poly A-containing messenger RNA from cultured hamster cells. Nucleic Acids Res, 1975, 2(10): 1653–1668. [13] Adams JM, Cory S. Modified nucleosides and bizarre 5'- termini in mouse myeloma mRNA. Nature, 1975, 255(5503): 28–33. [14] Jia GF, Fu Y, Zhao X, Dai Q, Zheng GQ, Yang Y, Yi CQ, Lindahl T, Pan T, Yang YG, He C. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol, 2011, 7(12): 885–887. [15] Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m6A RNA met?hylation. Nat Rev Genet, 2014, 15(5): 293–306. [16] Delatte B, Wang F, Ngoc LV, Collignon E, Bonvin E, Deplus R, Calonne E, Hassabi B, Putmans P, Awe S, Wetzel C, Kreher J, Soin R, Creppe C, Limbach PA, Gue?ydan C, Kruys V, Brehm A, Minakhina S, Defrance M, Steward R, Fuks F. RNA biochemistry. Transcriptome- wide distribution and function of RNA hydroxymethylcy?tosine. Science, 2016, 351(6270): 282–285. [17] Tahiliani M, Koh KP, Shen YH, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-methylcytosine to 5-hydroxymet?hylcytosine in mammalian DNA by MLL partner TET1. Science, 2009, 324(5929): 930–935. [18] Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 2011, 333(6047): 1300–1303. [19] He YF, Li BZ, Li Z, Liu P, Wang Y, Tang QY, Ding JP, Jia YY, Chen ZC, Li L, Sun Y, Li XX, Dai Q, Song CX, Zhang KL, He C, Xu GL. Tet-mediated formation of 5-carbox?ylcytosine and its excision by TDG in mammalian DNA. Science, 2011, 333(6047): 1303–1307. [20] Agris PF, Vendeix FAP, Graham WD. tRNA's wobble decoding of the genome: 40 years of modification. J Mol Biol, 2007, 366(1): 1–13. [21] Yue YN, Liu JZ, He C. RNA N6-methyladenosine meth?ylation in post-transcriptional gene expression regulation. Gene Dev, 2015, 29(13): 1343–1355. [22] Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA, 1974, 71(10): 3971–3975. [23] Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell, 2012, 149(7): 1635–1646. [24] Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G. Topology of the human and mouse m6A RNA meth?ylomes revealed by m6A-seq. Nature, 2012, 485(7397): 201–206. [25] Zheng GQ, Dahl JA, Niu YM, Fedorcsak P, Huang CM, Li CJ, V?gb? CB, Shi Y, Wang WL, Song SH, Lu ZK, Bosmans RPG, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia GF, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell, 2013, 49(1): 18–29. [26] Wang Y, Li Y, Toth JI, Petroski MD, Zhang ZL, Zhao JC. N6-methyladenosine modification destabilizes developme?ntal regulators in embryonic stem cells. Nat Cell Biol, 2014, 16(2): 191–198. [27] Liu JZ, Yue YN, Han DL, Wang X, Fu Y, Zhang L, Jia GF, Yu M, Lu ZK, Deng X, Dai Q, Chen WZ, He C. A METTL3-METTL14 complex mediates mammalian nuc?lear RNA N6-adenosine methylation. Nat Chem Biol, 2014, 10(2): 93–95. [28] Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, Zhao X, Li A, Yang Y, Dahal U, Lou XM, Liu X, Huang J, Yuan WP, Zhu XF, Cheng T, Zhao YL, Wang X, Danielsen JMR, Liu F, Yang YG. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res, 2014, 24(2): 177–189. [29] Wang X, Zhao BX, Roundtree LA, Lu ZK, Han DL, Ma HH, Weng XC, Chen K, Shi HL, He C. N6-methyladeno?sine modulates messenger RNA translation efficiency. Cell, 2015, 161(6): 1388–1399. [30] Xu C, Wang X, Liu K, Roundtree IA, Tempel W, Li YJ, Lu ZK, He C, Min JR. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat Chem Biol, 2014, 10(11): 927–929. [31] Zhu TT, Roundtree IA, Wang P, Wang X, Wang L, Sun C, Tian Y, Li J, He C, Xu YH. Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Res, 2014, 24(12): 1493–1496. [32] Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, Wang X, Ma HL, Huang CM, Yang Y, Huang N, Jiang GB, Wang HL, Zhou Q, Wang XJ, Zhao YL, Yang YG. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol Cell, 2016, 61(4): 507–519. [33] Alarcón CR, Goodarzi H, Lee H, Liu XH, Tavazoie S, Tavazoie SF. HNRNPA2B1 is a mediator of m6A-depen?dent nuclear RNA processing events. Cell, 2015, 162(6): 1299–1308. [34] Liu J, Jia GF. Methylation modifications in eukaryotic messenger RNA. J Genet Genomics, 2014, 41(1): 21–33. [35] Krug RM, Morgan MA, Shatkin AJ. Influenza viral mRNA contains internal N6-methyladenosine and 5'-ter?minal 7-methylguanosine in cap structures. J Virol, 1976, 20(1): 45–53. [36] Gu J, Patton JR, Shimba S, Reddy R. Localization of modified nucleotides in Schizosaccharomyces pombe spliceosomal small nuclear RNAs: modified nucleotides are clustered in functionally important regions. RNA, 1996, 2(9): 909–918. [37] Deng X, Chen K, Luo GZ, Weng XC, Ji QJ, Zhou TH, He C. Widespread occurrence of N6-methyladenosine in bac?terial mRNA. Nucleic Acids Res, 2015, 43(13): 6557–6567. [38] Chen-Kiang S, Nevins JR, Darnell JE, Jr. N-6-methyl- adenosine in adenovirus type 2 nuclear RNA is conserved in the formation of messenger RNA. J Mol Biol, 1979, 135(3): 733–752. [39] Narayan P, Ludwiczak RL, Goodwin EC, Rottman FM. Context effects on N6-adenosine methylation sites in prol?actin mRNA. Nucleic Acids Res, 1994, 22(3): 419–426. [40] Beemon K, Keith J. Localization of N6-methyladenosine in the Rous sarcoma virus genome. J Mol Biol, 1977, 113(1): 165–179. [41] Narayan P, Ayers DF, Rottman FM, Maroney PA, Nilsen TW. Unequal distribution of N6-methyladenosine in influenza virus mRNAs. Mol Cell Biol, 1987, 7(4): 1572–1575. [42] Luo GZ, MacQueen A, Zheng GQ, Duan HC, Dore LC, Lu ZK, Liu J, Chen K, Jia GF, Bergelson J, He C. Unique features of the m6A methylome in Arabidopsis thaliana. Nat Commun, 2014, 5(5630). [43] Schwartz S, Agarwala SD, Mumbach MR, Jovanovic M, Mertins P, Shishkin A, Tabach Y, Mikkelsen TS, Satija R, Ruvkun G, Carr SA, Lander ES, Fink GR, Regev A. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell, 2013, 155(6): 1409–1421. [44] Chen K, Lu ZK, Wang X, Fu Y, Luo GZ, Liu N, Han DL, Dominissini D, Dai Q, Pan T, He C. High-resolution N6-methyladenosine(m6A) map using photo-crosslinking- assisted m6A sequencing. Angew Chem Int Edit, 2015, 54(5): 1587–1590. [45] Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Meth, 2015, 12(8): 767–772. [46] Bokar JA, Rath-Shambaugh ME, Ludwiczak R, Narayan P, Rottman F. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisub?unit complex. J Biol Chem, 1994, 269(26): 17697–17704. [47] Tuck MT. Partial purification of a 6-methyladenine mRNA methyltransferase which modifies internal adenine residues. Biochem J, 1992, 288(Pt 1): 233–240. [48] Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rott?man FM. Purification and cDNA cloning of the Ado?Met-binding subunit of the human mRNA (N6-adeno?sine)-methyltransferase. RNA, 1997, 3(11): 1233–1247. [49] Leach RA, Tuck MT. Expression of the mRNA (N6-adeno?sine)-methyltransferase S-adenosyl-L-methionine binding subunit mRNA in cultured cells. Int J Biochem Cell Biol, 2001, 33(10): 984–999. [50] Chen T, Hao YJ, Zhang Y, Li MM, Wang M, Han WF, Wu YS, Lv Y, Hao J, Wang LB, Li A, Yang Y, Jin KX, Zhao X, Li YH, Ping XL, Lai WY, Wu LG, Jiang GB, Wang HL, Sang LS, Wang XJ, Yang YG, Zhou Q. m6A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell, 2015, 16(3): 289–301. [51] Bokar JA. The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA. In: Grosjean H, ed. Fine-Tuning of RNA Functions by Modification and Editing. Berlin Heidelberg: Springer, 2005: 141–177. [52] Bujnicki JM, Feder M, Radlinska M, Blumenthal RM. Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA: m6A methyltran?sferase. J Mol Evol, 2002, 55(4): 431–444. [53] Clancy MJ, Shambaugh ME, Timpte CS, Bokar JA. Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene. Nucleic Acids Res, 2002, 30(20): 4509–4518. [54] Shah JC, Clancy MJ. IME4, a gene that mediates MAT and nutritional control of meiosis in Saccharomyces cerevisiae. Mol Cell Biol, 1992, 12(3): 1078–1086. [55] Zhong SL, Li HY, Bodi Z, Button J, Vespa L, Herzog M, Fray RG. MTA is an Arabidopsis messenger RNA adeno?sine methylase and interacts with a homolog of a sex-spe?cific splicing factor. Plant Cell, 2008, 20(5): 1278–1288. [56] Hongay CF, Orr-Weaver TL. Drosophila Inducer of MEiosis 4 (IME4) is required for Notch signaling during oogenesis. Proc Natl Acad Sci USA, 2011, 108(36): 14855–14860. [57] Batista PJ, Molinie B, Wang JK, Qu K, Zhang JJ, Li LJ, Bouley DM, Lujan E, Haddad B, Daneshvar K, Carter AC, Flynn RA, Zhou C, Lim KS, Dedon P, Wernig M, Mullen AC, Xing Y, Giallourakis CC, Chang HY. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell, 2014, 15(6): 707–719. [58] Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D, Sanjana NE, Freinkman E, Pacold ME, Satija R, Mikkelsen TS, Hacohen N, Zhang F, Carr SA, Lander ES, Regev A. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites. Cell Rep, 2014, 8(1): 284–296. [59] Fedeles BI, Singh V, Delaney JC, Li DY, Essigmann JM. The AlkB family of Fe(II)/α-Ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond. J Biol Chem, 2015, 290(34): 20734–20742. [60] Fu Y, Jia GF, Pang XQ, Wang RN, Wang X, Li CJ, Smemo S, Dai Q, Bailey KA, Nobrega MA, Han KL, Cui Q, He C. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat Com?mun, 2013, 4: 1798. [61] Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L, Wells S, Bruning JC, Nolan PM, Ashcroft FM, Cox RD. Overexpression of fto leads to increased food intake and results in obesity. Nat Genet, 2010, 42(12): 1086–1092. [62] Yang J, Loos RJ, Powell JE, Medland SE, Speliotes EK, Chasman DI, Rose LM, Thorleifsson G, Steinthorsdottir V, Magi R, Waite L, Smith AV, Yerges-Armstrong LM, Monda KL, Hadley D, Mahajan A, Li G, Kapur K, Vitart V, Huffman JE, Wang SR, Palmer C, Esko T, Fischer K, Zhao JH, Demirkan A, Isaacs A, Feitosa MF, Luan J, Heard- Costa NL, White C, Jackson AU, Preuss M, Ziegler A, Eriksson J, Kutalik Z, Frau F, Nolte IM, Van Vliet-Ostapt?chouk JV, Hottenga JJ, Jacobs KB, Verweij N, Goel A, Medina-Gomez C, Estrada K, Bragg-Gresham JL, Sanna S, Sidore C, Tyrer J, Teumer A, Prokopenko I, Mangino M, Lindgren CM, Assimes TL, Shuldiner AR, Hui J, Beilby JP, McArdle WL, Hall P, Haritunians T, Zgaga L, Kolcic I, Polasek O, Zemunik T, Oostra BA, Junttila MJ, Gronberg H, Schreiber S, Peters A, Hicks AA, Stephens J, Foad NS, Laitinen J, Pouta A, Kaakinen M, Willemsen G, Vink JM, Wild SH, Navis G, Asselbergs FW, Homuth G, John U, Iribarren C, Harris T, Launer L, Gudnason V, O'Connell JR, Boerwinkle E, Cadby G, Palmer LJ, James AL, Musk AW, Ingelsson E, Psaty BM, Beckmann JS, Waeber G, Vollenweider P, Hayward C, Wright AF, Rudan I, Groop LC, Metspalu A, Khaw KT, van Duijn CM, Borecki IB, Province MA, Wareham NJ, Tardif JC, Huikuri HV, Cupples LA, Atwood LD, Fox CS, Boehnke M, Collins FS, Mohlke KL, Erdmann J, Schunkert H, Hengstenberg C, Stark K, Lorentzon M, Ohlsson C, Cusi D, Staessen JA, Van der Klauw MM, Pramstaller PP, Kathiresan S, Jolley JD, Ripatti S, Jarvelin MR, de Geus EJ, Boomsma DI, Penninx B, Wilson JF, Campbell H, Chanock SJ, van der Harst P, Hamsten A, Watkins H, Hofman A, Witteman JC, Zillikens MC, Uitterlinden AG, Rivadeneira F, Kiemeney LA, Vermeulen SH, Abecasis GR, Schlessinger D, Schipf S, Stumvoll M, Tonjes A, Spector TD, North KE, Lettre G, McCarthy MI, Berndt SI, Heath AC, Madden PA, Nyholt DR, Montgomery GW, Martin NG, McKnight B, Strachan DP, Hill WG, Snieder H, Ridker PM, Thorsteinsdottir U, Stefansson K, Frayling TM, Hirschhorn JN, Goddard ME, Visscher PM. FTO genotype is associated with phenotypic variability of body mass index. Nature, 2012, 490(7419): 267–272. [63] Jia GF, Yang CG, Yang SD, Jian X, Yi CQ, Zhou ZQ, He C. Oxidative demethylation of 3-methylthymine and 3-met-hyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett, 2008, 582(23–24): 3313–3319. [64] Han ZF, Niu TH, Chang JB, Lei XG, Zhao MY, Wang Q, Cheng W, Wang JJ, Feng Y, Chai JJ. Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature, 2010, 464(7292): 1205–1209. [65] Chen BE, Ye F, Yu L, Jia GF, Huang XT, Zhang XJ, Peng SY, Chen K, Wang MN, Gong SZ, Zhang RH, Yin JY, Li HY, Yang YM, Liu H, Zhang JW, Zhang HY, Zhang A, Jiang HL, Luo C, Yang CG. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc, 2012, 134(43): 17963–17971. [66] Huang Y, Yan JL, Li Q, Li JF, Gong SZ, Zhou H, Gan JH, Jiang HL, Jia GF, Luo C, Yang CG. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res, 2015, 43(1): 373–384. [67] Hess ME, Hess S, Meyer KD, Verhagen LA, Koch L, Bronneke HS, Dietrich MO, Jordan SD, Saletore Y, Elemento O, Belgardt BF, Franz T, Horvath TL, Ruther U, Jaffrey SR, Kloppenburg P, Bruning JC. The fat mass and obesity associated gene(fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci, 2013, 16(8): 1042–1048. [68] Xu C, Liu K, Tempel W, Demetriades M, Aik W, Schofield CJ, Min JR. Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-Methyladenosine RNA semethylation. J Biol Chem, 2014, 289(25): 17299–17311. [69] Kang HJ, Jeong SJ, Kim KN, Baek IJ, Chang M, Kang CM, Park YS, Yun CW. A novel protein, Pho92, has a con?served YTH domain and regulates phosphate metabol?ism by decreasing the mRNA stability of PHO4 in Sacch?aromyces cerevisiae. Biochem J, 2014, 457(3): 391–400. [70] Fustin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, Isagawa T, Morioka MS, Kakeya H, Manabe I, Okamura H. RNA-methylation-dependent RNA process?ing controls the speed of the circadian clock. Cell, 2013, 155(4): 793–806. [71] Zhang ZY, Theler D, Kaminska KH, Hiller M, de la Grange P, Pudimat R, Rafalska I, Heinrich B, Bujnicki JM, Allain FH, Stamm S. The YTH domain is a novel RNA binding domain. J Biol Chem, 2010, 285(19): 14701–14710. [72] Xu C, Liu K, Ahmed H, Loppnau P, Schapira M, Min JR. Structural basis for the discriminative recognition of N6-methyladenosine RNA by the human YT521-B homology domain family of proteins. J Biol Chem, 2015, 290(41): 24902–24913. [73] Hiriart E, Vavasseur A, Touat-Todeschini L, Yamashita A, Gilquin B, Lambert E, Perot J, Shichino Y, Nazaret N, Boyault C, Lachuer J, Perazza D, Yamamoto M, Verdel A. Mmi1 RNA surveillance machinery directs RNAi complex RITS to specific meiotic genes in fission yeast. EMBO J, 2012, 31(10): 2296–2308. [74] Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ, Jin KX, Wang X, Huang CM, Fu Y, Ge XM, Song SH, Jeong HS, Yanagisawa H, Niu YM, Jia GF, Wu W, Tong WM, Okamoto A, He C, Danielsen JMR, Wang XJ, Yang YG. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res, 2014, 24(12): 1403–1419. [75] Han SP, Tang YH, Smith R. Functional diversity of the hnRNPs: past, present and perspectives. Biochem J, 2010, 430(3): 379–392. [76] Han N, Li WT, Zhang MX. The function of the RNA-binding protein hnRNP in cancer metastasis. J Cancer Res Ther, 2013, 9(7): 129–134. [77] Liu N, Dai Q, Zheng GQ, He C, Parisien M, Pan T. N6- methyladenosine-dependent RNA structural switches reg?ulate RNA-protein interactions. Nature, 2015, 518(7540): 560–564. [78] Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282(5391): 1145–1147. [79] Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS, Ben-Haim MS, Eyal E, Yunger S, Pinto Y, Jaitin DA, Viukov S, Rais Y, Krupalnik V, Chomsky E, Zerbib M, Maza I, Rechavi Y, Massarwa R, Hanna S, Amit I, Levanon EY, Amariglio N, Stern- Ginossar N, Novershtern N, Rechavi G, Hanna JH. Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science, 2015, 347(6225): 1002–1006. |
[1] | 杨晓丹,韩威,刘峰. DNA甲基化与脊椎动物胚胎发育[J]. 遗传, 2012, 34(9): 1108-1113. |
[2] | 郭欣欣,叶海燕,张敏. 果蝇DNA甲基化研究进展[J]. 遗传, 2011, 33(7): 713-719. |
[3] | 王志刚,吴建新. DNA甲基转移酶分类、功能及其研究进展[J]. 遗传, 2009, 31(9): 903-912. |
[4] | 苏玉,王溪,朱卫国. DNA甲基转移酶的表达调控及主要生物学功能[J]. 遗传, 2009, 31(11): 1087-1093. |
[5] | 谢萍,田春艳,张令强,安利国,贺福初. 组蛋白甲基转移酶的研究进展[J]. 遗传, 2007, 29(9): 1035-1035―1041. |
[6] | 杜婷婷,黄秋花. 组蛋白赖氨酸甲基化在表观遗传调控中的作用[J]. 遗传, 2007, 29(4): 387-392. |
[7] | 李俊宁,许琪,沈岩,季梁. 偏执型精神分裂症与4个涉及多巴胺代谢的基因之间的关联分析[J]. 遗传, 2006, 28(4): 403-406. |
[8] | 李想,张飞雄. 关于组蛋白甲基化的研究[J]. 遗传, 2004, 26(2): 244-248. |
[9] | 李建许,刘红林. DNA甲基化与组蛋白甲基化的关系[J]. 遗传, 2004, 26(2): 267-270. |
[10] | 吴怀安,邓小敏,阎小华,刘铁榜,胡纪泽,高欢,沈其杰. 5个精神分裂症高发家系与COMT关联的分析[J]. 遗传, 2003, 25(6): 652-654. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: