[1] | McClintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA, 1950, 36(6): 344-355. | [2] | Gao B, Shen D, Xue SL, Chen C, Cui HM, Song CY. The contribution of transposable elements to size variations between four teleost genomes. Mob DNA, 2016, 7: 4. | [3] | Huang CR, Burns KH, Boeke JD. Active transposition in genomes. Annu Rev Genet, 2012, 46: 651-675. | [4] | Jurka J, Kapitonov VV, Kohany O, Jurka MV. Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet, 2007, 8: 241-259. | [5] | Lohe AR, De Aguiar D, Hartl DL. Mutations in the mariner transposase: the D, D(35)E consensus sequence is nonfunctional. Proc Natl Acad Sci USA, 1997, 94(4): 1293-1297. | [6] | Voigt F, Wiedemann L, Zuliani C, Querques I, Sebe A, Mátés L, Izsvák Z, Ivics Z, Barabas O. Sleeping Beauty transposase structure allows rational design of hyperactive variants for genetic engineering. Nat Gommun, 2016, 7: 11126. | [7] | Ivics Z, Izsvák Z. The expanding universe of transposon technologies for gene and cell engineering. Mob DNA, 2010, 1: 25. | [8] | Munoz-Lopez M, Garcia-Perez JL. DNA transposons: nature and applications in genomics. Curr Genomics, 2010, 11(2): 115-128. | [9] | Palazzoli F, Testu FX, Merly F, Bigot Y. Transposon tools: worldwide landscape of intellectual property and technological developments. Genetica, 2010, 138(3): 285-299. | [10] | Nguyen DH, Hermann D, Caruso A, Tastard E, Marchand J, Rouault JD, Denis F, Thiriet-Rupert S, Casse N, Morant-Manceau A. First evidence of mariner-like transposons in the genome of the marine microalga Amphora acutiuscula (Bacillariophyta). Protist, 2014, 165(5): 730-744. | [11] | Tellier M, Bouuaert CC, Chalmers R. Mariner and the ITm Superfamily of Transposons. Microbiology Spectrum, 2015, 3(2): MDNA3-0033-2014. | [12] | Fernández-Medina RD, Granzotto A, Ribeiro JM, Carareto CMA. Transposition burst of mariner-like elements in the sequenced genome of Rhodnius prolixus. Insect Biochem Mol Biol, 2016, 69: 14-24. | [13] | Kulkosky J, Jones KS, Katz RA, Mack JP, Skalka AM. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol Cell Biol, 1992, 12(5): 2331-2338. | [14] | Mizuuchi K. Transpositional recombination: mechanistic insights from studies of mu and other elements. Annu Rev Biochem, 1992, 61: 1011-1051. | [15] | Hartl D. Discovery of the transposable element mariner. Genetics, 2001, 157(2): 471-476. |
|
[1] |
陈凯, 王灏, 陈燚婷, 符可, 韩之刚, 李聪, 斯金平, 陈东红. 铁皮石斛WOX家族基因在生长发育中的功能分析[J]. 遗传, 2023, 45(8): 700-714. |
[2] |
韩玉婷, 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-14. |
[3] |
陈欲, 陈笑芸, 彭城, 徐俊锋, 沈洁, 李玥莹, 汪小福. 转基因玉米双抗12-5荧光RPA现场可视化检测方法的建立[J]. 遗传, 2021, 43(8): 802-812. |
[4] |
魏强, 奥岩, 杨漫漫, 陈涛, 韩虎, 张兴举, 王然, 夏秋菊, 姜芳芳, 李勇. 利用全基因组重测序技术鉴定五指山猪GHR突变体转基因插入位点[J]. 遗传, 2021, 43(12): 1149-1158. |
[5] |
宋绍征, 于康英, 张婷, 陆睿, 潘生强, 周鸣鸣, 成勇. tPA/gGH双基因转染山羊乳腺上皮细胞表达分析[J]. 遗传, 2020, 42(4): 380-387. |
[6] |
鲍莉雯, 周一叶, 曾凡一. 基于CRISPR/Cas9技术的β-地中海贫血和血友病基因治疗研究进展[J]. 遗传, 2020, 42(10): 949-964. |
[7] |
莫健新,王豪强,黄广燕,蔡更元,吴珍芳,张献伟. 微生物源果胶酶在猪PK15细胞中异源表达及其酶学性质分析[J]. 遗传, 2019, 41(8): 736-745. |
[8] |
牛煦然,尹树明,陈曦,邵婷婷,李大力. 基因编辑技术及其在疾病治疗中的研究进展[J]. 遗传, 2019, 41(7): 582-598. |
[9] |
任云晓, 肖茹丹, 娄晓敏, 方向东. 基因编辑技术及其在基因治疗中的应用[J]. 遗传, 2019, 41(1): 18-27. |
[10] |
张豪, 张志鹏, 郭晓东, 马敏, 敖月, 刘旭, 马小燕, 梁浩, 郭旭东. cgVEGF164基因对小鼠毛囊生长的影响[J]. 遗传, 2019, 41(1): 76-84. |
[11] |
胡广东,郝科兴,黄涛,曾维斌,谷新利,王静. 绵羊高效转基因通用型piggyBac转座子载体构建及功能验证[J]. 遗传, 2018, 40(8): 647-656. |
[12] |
徐纪明,胡晗,毛文轩,毛传澡. 利用重测序技术获取转基因植物T-DNA插入位点[J]. 遗传, 2018, 40(8): 676-682. |
[13] |
陈一欧, 宝颖, 马华峥, 伊宗裔, 周卓, 魏文胜. 基因编辑技术及其在中国的研究发展[J]. 遗传, 2018, 40(10): 900-915. |
[14] |
陈建伟,邵宁,张雨晨,朱元首,杨立桃,陶生策,卢大儒. 一种载样简单的多重可视化PCR微芯片[J]. 遗传, 2017, 39(6): 525-534. |
[15] |
李爽,杨圆圆,邱艳,陈彦好,徐璐薇,丁秋蓉. 基因组编辑技术在精准医学中的应用[J]. 遗传, 2017, 39(3): 177-188. |
|