[1] | Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM . RNA-guided human genome engineering via Cas9 prashant. Science, 2013,339(6121):823-826. [DOI] | [2] | Hsu PD, Lander ES, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157(6):1262-1278. [DOI] | [3] | Kim H, Kim JS . A guide to genome engineering with programmable nucleases. Nat Rev Genet, 2014,15(5):321-334. [DOI] | [4] | Gaj T, Gersbach CA, Barbas CF. ZFN , TALEN,CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013,31(7):397-405. [DOI] | [5] | Ahmad HI, Ahmad MJ, Asif AR, Adnan M, Iqbal MK, Mehmood K, Muhammad SA, Bhuiyan AA, Elokil A, Du X, Zhao C, Liu X, Xie S . A review of crispr-based genome editing: Survival, evolution and challenges. Curr Issues Mol Biol, 2018,28:47-68. [DOI] | [6] | Musunuru K . The hope and hype of CRISPR-Cas9 genome editing: A review. JAMA Cardiol, 2017,2(8):914-919. [DOI] | [7] | Li L, Wu LP, Chandrasegaran S . Functional domains in Fok I restriction endonuclease. Proc Natl Acad Sci USA, 1992,89(10):4275-4279. [DOI] | [8] | Kim YG, Chandrasegaran S . Chimeric restriction endonuclease. Proc Natl Acad Sci USA, 1994,91(3):883-887. [DOI] | [9] | Kim YG, Cha J, Chandrasegaran S . Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA, 1996,93(3):1156-1160. [DOI] | [10] | Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S . Zinc finger nucleases: Custom- designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res, 2005,33(18):5978-5990. [DOI] | [11] | Xiao A, Hu YY, Wang WY, Yang ZP, Wang ZX, Huang P, Tong XJ, Zhang B, Lin S . Progress in zinc finger nuclease engineering for targeted genome modification. Hereditas (Beijing), 2011,33(7):665-683. | [11] | 肖安, 胡莹莹, 王唯晔, 杨志芃, 王展翔, 黄鹏, 佟向军, 张博, 林硕 . 人工锌指核酸酶介导的基因组定点修饰技术. 遗传, 2011,33(7):665-683. [DOI] | [12] | Bibikova M, Golic M, Golic KG, Carroll D . Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 2002,161(3):1169-1175. [DOI] | [13] | Bibikova M, Beumer K, Trautman JK, Carroll D . Enhancing gene targeting with designed zinc finger nucleases. Science, 2003,300(5620):764. [DOI] | [14] | Kim J-S . Genome editing comes of age. Nat Protoc, 2016,11(9):1573-1578. [DOI] | [15] | Hatada I, Horii T . Genome editing: A breakthrough in life science and medicine. Endocr J, 2016,63(2):105-110. [DOI] | [16] | Moscou MJ, Bogdanove AJ . A simple cipher governs DNA recognition by TAL effectors. Science, 2009,326(5959):1501. [DOI] | [17] | Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U . Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009,326(5959):1509-1512. [DOI] | [18] | Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng XD, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang Lei, Gregory PD, Rebar EJ . A TALE nuclease architecture for efficient genome editing. Nat Biotechnol, 2011,29(9):143-148. [DOI] | [19] | Eid A, Mahfouz MM . Genome editing: The road of CRISPR/Cas9 from bench to clinic. Exp Mol Med, 2016,48:e265. [DOI] | [20] | Ramani V, Shendure J, Duan Z . Understanding spatial genome organization: methods and insights. Genom Prot Bioinf, 2016,14(20):7-20. [DOI] | [21] | Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E, Charpentier E . A programmable Dual- RNA-Guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821. [DOI] | [22] | Cho SW, Kim S, Kim JM, Kim JS . Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol, 2013,31(3):230-232. [DOI] | [23] | Shah SA, Garrett RA . CRISPR/Cas and Cmr modules, mobility and evolution of adaptive immune systems. Res Microbiol, 2011,162(1):27-38. [DOI] | [24] | Makarova KS, Zhang F, Koonin E V . SnapShot: Class 2 CRISPR-Cas systems. Cell, 2017, 168(1-2): 328-328. e1. [DOI] | [25] | Chira S, Gulei D, Hajitou A, Zimta AA, Cordelier P, Berindan-Neagoe I . CRISPR/Cas9: Transcending the reality of genome editing. Mol Ther Nucleic Acids, 2017,7:211-222. [DOI] | [26] | Wilson JM . The Past, present, and future of gene therapy from Nobel Laureate David Baltimore. Hum Gene Ther Clin Dev, 2017,28(2):65-67. [DOI] | [27] | Flagfeldt DB, Siewers V, Huang L, Nielsen J . Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast, 2009,26(10):545-551. [DOI] | [28] | Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Cold Spring Harb Lab Press Method, 2014,24(1):132-141. [DOI] | [29] | Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, Hwang J, Kim JI, Kim JS . Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods, 2015,12(3):237-243. [DOI] | [30] | Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK . Dimeric CRISPR RNA-guided FokⅠ nucleases for highly specific genome editing. Nat Biotechnol, 2014,32(6):569-576. [DOI] | [31] | Guilinger JP, Thompson DB, Liu DR . Fusion of catalytically inactive Cas9 to FokⅠ nuclease improves the specificity of genome modification. Nat Biotechnol, 2014,32(6):577-582. [DOI] | [32] | Bolukbasi M F, Gupta A, Oikemus S, Derr AG, Garber M, Brodsky M H, Zhu LJ, Wolfe SA . DNA-binding domain fusions enhance the targeting range and precision of Cas9. Nat Methods, 2017,12:39-46. [DOI] | [33] | Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang LH, Church GM . CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol, 2013,31(9):833-838. [DOI] | [34] | Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR . Publisher Correction: Programmable base editing of A · T to G · C in genomic DNA without DNA cleavage. Nature, 2018,559(7714):E8. [DOI] | [35] | Wei Y, Zhang XH, Li DL . The “new favorite” of gene editing technology-single base editors. Hereditas(Beijing), 2017,39(12):1115-1121. | [35] | 魏瑜, 张晓辉, 李大力 . 基因编辑之“新宠”—单碱基基因组编辑系统. 遗传, 2017,39(12):1115-1121. [DOI] | [36] | Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR . Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016,533(7603):420-424. [DOI] | [37] | Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, Shimatani Z, Kondo A . Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 2016, 353(6304): pii: aaf8729. doi: 10.1126/science.aaf8729.[DOI] | [38] | Ma Y, Zhang J, Yin W, Zhang Z, Song Y, Chang X . Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods, 2016,13(2):1029-1035. [DOI] | [39] | Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR . Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol, 2017,35(4):371-376. [DOI] | [40] | Rees HA, Komor AC, Yeh WH, Caetano-Lopes J, Warman M, Edge ASB, Liu DR . Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun, 2017,8:15790. [DOI] | [41] | Mourad NI, Gianello P . Gene editing, gene therapy, and cell xenotransplantation: cell transplantation across species. Curr Transplant Reports, 2017,4(3):193-200. [DOI] | [42] | Shalem O, Sanjana N E, Zhang F . High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet, 2015,16(5):299-311. [DOI] | [43] | Ackermann M, Kuhn A, Kunkiel J, Merkert S, Martin U, Moritz T, Lachmann N . Ex vivo generation of genetically modified macrophages from human induced pluripotent stem cells. Transfus Med Hemother, 2017,44(3):135-142. [DOI] | [44] | Hoban MD, Cost GJ, Mendel MC, Romero Z, Kaufman ML, Joglekar AV, Ho M, Lumaquin D, Gray D, Lill GR, Cooper AR, Urbinati F, Senadheera S, Zhu A, Liu PQ, Paschon DE, Zhang L, Rebar EJ, Andrew Wilber, Xiaoyan Wang, Philip D. Gregory, Michael C. Holmes, Andreas Reik, Roger P. Hollis and Donald B. Kohn . Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood, 2015,125(17):2597-2604. [DOI] | [45] | Huang X, Zhou G, Wu W, Duan Y, Ma G, Song J, Xiao R, Vandenberghe L, Zhang F, D’Amore PA, Lei H . Genome editing abrogates angiogenesis in vivo. Nat Commun, 2017,8(1):112. [DOI] | [46] | Jain A, Zode G, Kasetti RB, Ran FA, Yan W, Sharma TP, Bugge K, Searby CC, Fingert JH, Zhang F, Clark AF, Sheffield VC . CRISPR-Cas9-based treatment of myocilin- associated glaucoma. Proc Natl Acad Sci USA, 2017,114(42):11199-11204. [DOI] | [47] | Kim K, Park SW, Kim JH, Lee SH, Kim D, Koo T, Kim K, Kim JH, Kim JS . Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res, 2017,27(3):419-426. [DOI] | [48] | Wang CX, Cannon PM . The clinical applications of genome editing in HIV. Blood, 2016,127(21):2546-2552. [DOI] | [49] | Wang Q, Chen S, Xiao Q, Liu Z, Liu S, Hou P, Zhou L, Hou W, Ho W, Li C, Wu L, Guo D . Genome modification of CXCR4 by Staphylococcus aureus Cas9 renders cells resistance to HIV-1 infection. Retrovirology, 2017,14(1):5. [DOI] | [50] | Wang CX, Cannon PM . Clinical applications of genome editing to HIV cure. AIDS Patient Care STDS, 2016,30(12):539-544. [DOI] | [51] | Liu Z, Chen S, Jin X, Wang Q, Yang K, Li C, Xiao X, Hou P, Liu S, Wu S, Hou W, Xiong Y, Kong C, Zhao X, Wu L, Li C, Sun G, Guo D . Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4 +T cells from HIV-1 infection . Cell Biosci, 2017,7:47. [DOI] | [52] | Maus MV, Grupp SA, Porter DL, June CH . Antibody- modified T cells : CARs take the front seat for hematologic malignancies. Blood, 2014,123:2625-2635. [DOI] | [53] | Ren J, Zhao Y . Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein Cell, 2017,8(9):634-643. [DOI] | [54] | Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y . Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res, 2018,23(9):2255-2266. [DOI] | [55] | Lloy A, Vickery ON, Laugel B . Beyond the antigen receptor: editing the genome of T-cells for cancer adoptive cellular therapies. Front Immunol, 2013,4:221. [DOI] | [56] | Hoos A . Development of immuno-oncology drugs-from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov, 2016,15(4):235-247. [DOI] | [57] | Cyranoski D . Chinese scientists to pioneer first human CRISPR trial. Nature, 2016,535(7613):476-477. [DOI] | [58] | Cyranoski D . CRISPR gene-editing tested in a person for the first time. Nature, 2016,539:479. [DOI] | [59] | Liang P, Ding C, Sun H, Xie X, Xu Y, Zhang X, Sun Y, Xiong Y, Ma W, Liu YX, Wang Y, Fang J, Dan L, Zhou S, Zhou C, Huang J . Correction of β-thalassemia mutant by base editor in human embryos. Protein Cell, 2017,8(11):811-822. [DOI] | [60] | Chadwick AC, Wang X, Musunuru K . In vivo base editing of PCSK9(proprotein convertase Subtilisin/Kexin type 9) as a therapeutic alternative to genome editing. Arterioscler Thromb Vasc Biol, 2017,37(9):1741-1747. [DOI] | [61] | Yin S, He GF, Lai FN, Xie FY, J Y . The off-target effect of CRISPR/Cas9. Biotechnol Bull, 2016,32(3):31-37. | [61] | 尹珅, 贺桂芳, 赖方秾, 谢凤云, 马俊宇 . CRISPR/Cas9系统的脱靶效应. 生物技术通报, 2016,32(3):31-37. [DOI] | [62] | Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR . Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol, 2015,11(5):316-318. [DOI] | [63] | Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Ved V, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK . GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol, 2015,33(2):187-197. [DOI] | [64] | Zischewski J, Fischer R, Bortesi L . Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv, 2016,35(1):95-104. [DOI] | [65] | Mout R, Ray M, Lee YW, Scaletti F, Rotello VM . In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges. Bioconjug Chem, 2017,28(4):880-884. [DOI] | [66] | Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Kommineni S, Chen J, Sondey M,Ye C Randhawa R, Kulkarni T, Yang Z, McAllister G, Russ C, Reece-Hoyes J, Forrester W, Hoffman GR, Dolmetsch R, Kaykas A . P53 inhibits CRISPR - Cas9 engineering in human pluripotent stem cells. Nat Med, 2018,24(7):939-946. [DOI] | [67] | Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J . CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med, 2018,24(7):927-930. [DOI] | [68] | Kosicki M, Bradley A . Repair of CRISPR-Cas9-induced double-stranded breaks leads to large deletions and complex rearrangements. Nat Biotechnol, 2018,36(8):765-771. [DOI] | [69] | Zhang GS, Yang Y, Zhang LM, Dai XH . Application of machine learning in the CRISPR/Cas9 system. Hereditas (Beijing), 2018,40(9):704-723. | [69] | 张桂珊, 杨勇, 张灵敏, 戴宪华 . 机器学习方法在CRISPR/ Cas9系统中的应用. 遗传, 2018,40(9):704-723. [DOI] |
|